Volume 37 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
ZHANG Guangtai, CAO Yinlong, LI Ruixiang, et al. Calculation of bearing capacity of polypropylene-steel fiber reinforced concrete column under large eccentric loading[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20200201.001
Citation: ZHANG Guangtai, CAO Yinlong, LI Ruixiang, et al. Calculation of bearing capacity of polypropylene-steel fiber reinforced concrete column under large eccentric loading[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20200201.001

Calculation of bearing capacity of polypropylene-steel fiber reinforced concrete column under large eccentric loading

doi: 10.13801/j.cnki.fhclxb.20200201.001
  • Received Date: 2019-10-23
  • Accepted Date: 2020-01-13
  • Available Online: 2020-02-02
  • Publish Date: 2020-09-15
  • The cube compressive test, axial compressive test and splitting tensile test were conducted on 270 polypropylene-steel fiber/concrete test blocks with polypropylene fiber content (volume fraction) of 0vol%, 0.1vol%, 0.2vol%, 0.3vol%, 0.4vol%, 0.5vol% and steel fiber content (volume fraction) of 0vol%, 0.5vol%, 1vol%, 1.5vol% and 2vol% respectively. Based on the mechanical theory of polypropylene-steel fiber/concrete composites, the strength prediction model was established considering the fiber orientation coefficient, effective length coefficient and interfacial bond coefficient. The mechanism was also analyzed. Six polypropylene-steel fiber/concrete columns were made from polypropylene fiber with a content of 0vol%, 0.1vol%, 0.3vol% and steel fiber with a content of 0vol%, 1.5vol% to perform large eccentric compression test. On the basis of strength prediction model, the bearing capacity of polypropylene-steel fiber/concrete was calculated. The results show that steel fiber can improve the compressive strength, axial compressive strength and splitting tensile strength of polypropylene-steel fiber/concrete. Polypropylene fiber can improve the splitting tensile strength of polypropylene-steel fiber/concrete, but can’t improve the compressive strength. The ultimate bearing capacity of concrete columns can be effectively increased by adding polypropylene-steel fibers.

     

  • loading
  • [1]
    徐礼华, 夏冬桃, 夏广政, 等. 钢纤维和聚丙烯纤维对高强混凝土强度的影响[J]. 武汉理工大学学报, 2007, 29(4):58-60, 98. doi: 10.3321/j.issn:1671-4431.2007.04.018

    XU Lihua, XIA Dongtao, XIA Guangzheng, et al. Effect of steel fiber and polypropylene fiber on the strength of high strength concrete[J]. Journal of Wuhan University of Technology,2007,29(4):58-60, 98(in Chinese). doi: 10.3321/j.issn:1671-4431.2007.04.018
    [2]
    高丹盈, 赵军, 汤寄予. 掺有纤维的高强混凝土劈拉性能试验研究[J]. 土木工程学报, 2005, 38(7):21-26. doi: 10.3321/j.issn:1000-131X.2005.07.005

    GAO Danying, ZHAO Jun, TANG Jiyu. An experimental study on the behavior of fiber reinforced high-strength concrete under splitting tension[J]. China Civil Engineering Journal,2005,38(7):21-26(in Chinese). doi: 10.3321/j.issn:1000-131X.2005.07.005
    [3]
    潘慧敏, 马云朝. 钢纤维混凝土抗冲击性能及其阻裂增韧机理[J]. 建筑材料学报, 2017, 20(6):956-961. doi: 10.3969/j.issn.1007-9629.2017.06.021

    PAN Huimin, MA Yunchao. Impact resistance of steel fiber reinforced concrete and its mechanism of crack resistance and toughening[J]. Journal of Building Materials,2017,20(6):956-961(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.06.021
    [4]
    李传习, 聂洁, 石家宽, 等. 纤维类型对混凝土抗压强度和弯曲韧性的增强效应及变异性的影响[J]. 土木与环境工程学报(中英文), 2019, 41(2):147-158.

    LI Chuanxi, NIE Jie, SHI Jiakuan, et al. Effect of fiber type on compressive strength and flexural toughness of concrete and analysis of variability[J]. Journal of Civil and Environmental Engineering,2019,41(2):147-158(in Chinese).
    [5]
    赵秋山, 徐慎春, 刘中宪. 钢纤维增强超高性能混凝土抗压性能的细观数值模拟[J]. 复合材料学报, 2018, 35(6):1661-1673.

    ZHAO Qiushan, XU Shenchun, LIU Zhongxian. Microscopic numerical simulation of the uniaxial compression of steel fiber reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(6):1661-1673(in Chinese).
    [6]
    赵纪生, 陶夏新, 师黎静, 等. 钢纤维混凝土弯压构件承载力试验与理论分析[J]. 土木工程学报, 2005, 38(3):12-16. doi: 10.3321/j.issn:1000-131X.2005.03.003

    ZHAO Jishen, TAO Xiaxin, SHI Lijin, et al. Experimental and theoretical studies on the bearing capacities of steel-fiber reinforced structural members under compressive bending[J]. China Civil Engineering Journal,2005,38(3):12-16(in Chinese). doi: 10.3321/j.issn:1000-131X.2005.03.003
    [7]
    徐礼华, 黄乐, 韦翠梅, 等. 钢-聚丙烯混杂纤维混凝土柱抗震承载力试验研究[J]. 建筑结构学报, 2014, 35(8):95-103.

    XU Lihua, HUANG Le, WEI Cuimei, et al. Experimental Tests of seismic bearing capacity of steel-polypropylene hybrid fiber reinforced concrete columns[J]. Journal of Building Structures,2014,35(8):95-103(in Chinese).
    [8]
    朱海堂, 程晟钊, 高丹盈, 等. BFRP筋钢纤维高强混凝土梁受弯承载力试验与理论[J]. 复合材料学报, 2018, 35(12):3313-3323.

    ZHU Haitang, CHENG Shengzhao, GAO Danyin, et al. Exprimental and theoretical study on the flexural capacity on high-strength concrete beams reinforced with BFRP bars and steel fiber[J]. Acta Materiae Compositae Sinica,2018,35(12):3313-3323(in Chinese).
    [9]
    TOKGOZ S, DUNDAR C, TANRIKULU A K. Experimental behaviour of steel fiber high strength reinforced concrete and composite columns[J]. Journal of Constructional Steel Research,2012,74:98-107. doi: 10.1016/j.jcsr.2012.02.017
    [10]
    中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS 13∶2009[S]. 北京: 中国计划出版社, 2010.

    China Association for Engineering Construction Standardization. Standard test methods for fiber reinforced concrete: CECS 13∶2009[S]. Beijing: China Planning Press, 2010(in Chinese).
    [11]
    中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of mechanical properties of ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2003(in Chinese).
    [12]
    GANESAN N, INDIRA P V, SABEENA M V. Bond stress slip response of bars embedded in hybrid fiber reinforced high performance concrete[J]. Construction and Building Materials,2014,50:108-115. doi: 10.1016/j.conbuildmat.2013.09.032
    [13]
    中国工程建设标准化协会. 纤维混凝土结构技术规程: CECS 38∶2004[S]. 北京: 中国计划出版社, 2005.

    China Association for Engineering Construction Standardization. Technical specification for fiber reinforced concrete structures: CECS 38∶2004[S]. Beijing: China Planning Press, 2005(in Chinese).
    [14]
    李秋义, 樊红, 赵景海. 三维乱向分布钢纤维方向效能系数的理论值[J]. 哈尔滨建筑大学学报, 1998, 31(1):83-86.

    LI Qiuyi, FAN Hong, ZHAO Jinghai. Theoretical value of efficiency coefficient of three dimensional random distribution steel fiber direction[J]. Journal of Harbin University of Civil Engineering and Architecture,1998,31(1):83-86(in Chinese).
    [15]
    慕儒, 马艳奉, 李辉, 等. 定向钢纤维混凝土中的钢纤维分布X-ray CT分析[J]. 电子显微学报, 2015, 34(6):487-491. doi: 10.3969/j.issn.1000-6281.2015.06.007

    MU Ru, MA Yanfeng, LI Hui, et al. Analysis of the distribution of steel fiber in aligned steel fiber reinforced concrete using digital X-ray CT scanning[J]. Journal of Chinese Electron Microscopy Society,2015,34(6):487-491(in Chinese). doi: 10.3969/j.issn.1000-6281.2015.06.007
    [16]
    俞家欢, 刘琼阳. 水泥基复合材料中纤维拉拔的变位约束细观力学模型[J]. 复合材料学报, 2008, 25(5):147-150. doi: 10.3321/j.issn:1000-3851.2008.05.024

    YU Jiahuan, LIU Qiongyang. Meso-scale variable engagement model for single fiber reinforced concrete under uniaxial tension[J]. Acta Materiae Compositae Sinica,2008,25(5):147-150(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.024
    [17]
    罗洪林, 杨鼎宜, 周兴宇, 等. 不同长径比聚丙烯纤维增强混凝土的力学特性[J]. 复合材料学报, 2019, 36(8):1935-1948.

    LUO Hongling, YANG Dingyi, ZHOU Xingyu, et al. Mechanical properties of polypropylene fiber reinforced concrete with different aspect ratios[J]. Acta Materiae Compositae Sinica,2019,36(8):1935-1948(in Chinese).
    [18]
    王力, 徐礼华, 邓方茜, 等. 波纹型钢纤维-混杂纤维混凝土界面粘结性能[J/OL]. 建筑材料学报:1-15 [2020-08-10]. http://kns.cnki.net/kcms/detail/31.1764.TU.20190716.1323.009.html.

    WANG Li, XU Lihua, DENG Fangqian, et al. The bonding performance of corrugated steel fiber-hybrid fiber concrete matrix interface[J]. Journal of Building Materials:1-15 [2020-08-10]. http://kns.cnki.net/kcms/detail/31.1764.TU.20190716.1323.009.html(in Chinese).
    [19]
    李秋义, 李家和, 袁杰. SFRC兼有阻裂作用的复合理论[J]. 哈尔滨建筑大学学报, 2002, 35(4):81-83, 107.

    LI Qiuyi, LI Jiahe, YUAN Jie. Composite theory of SFRC accompanied with action of crack arrest[J]. Journal of Harbin University of Civil Engineering and Architecture,2002,35(4):81-83, 107(in Chinese).
    [20]
    郑建岚, 郑作樵. 钢纤维钢筋高强混凝土柱的变形与延性计算[J]. 工程力学, 1999, 16(1):56-66.

    ZHENG Jianlan, ZHENG Zuoqiao. Calculation of deformation and ductility of steel fiber reinforced high strength concrete columns[J]. Engineering Mechanics,1999,16(1):56-66(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(7)

    Article Metrics

    Article views (1078) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return