Volume 37 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
HU Xiaolan, LIU Wenjun, YU Ronglu, et al. Phosphorus-containing polyaryletherketone-bismaleimide resin (PAEK-P-BMI) and carbon fiber/PAEK-P-BMI composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2117-2124. doi: 10.13801/j.cnki.fhclxb.20200115.001
Citation: HU Xiaolan, LIU Wenjun, YU Ronglu, et al. Phosphorus-containing polyaryletherketone-bismaleimide resin (PAEK-P-BMI) and carbon fiber/PAEK-P-BMI composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2117-2124. doi: 10.13801/j.cnki.fhclxb.20200115.001

Phosphorus-containing polyaryletherketone-bismaleimide resin (PAEK-P-BMI) and carbon fiber/PAEK-P-BMI composites

doi: 10.13801/j.cnki.fhclxb.20200115.001
  • Received Date: 2019-10-30
  • Accepted Date: 2019-12-18
  • Available Online: 2020-01-15
  • Publish Date: 2020-09-15
  • In order to improve the toughness of resin transfer molding(RTM) composites, combining the “ex-situ” composite toughening technology and RTM processing, a novel thermoplastic phosphorus-containing polyaryletherketone(PAEK-P) was used to toughen the carbon fiber/bismaleimide resin(CF/BMI) composites. The rheological properties, phase separation behavior of the PAEK-P-BMI resin and the effect of PAEK-P upon the toughness of the CF/BMI composites were investigated. The results show that the PAEK-P resin has high heat resistance at the glass transition temperature of 268.8℃ for its rigid structure. The gel time and viscosity increase inflection point time of the PAEK-P-BMI composite resin are little affected by the PAEK-P content because of its poor solubility in BMI resin. The PAEK-P-BMI composite resin shows no phase separation at 110℃/300 min. However, the phase separation structure is formed in the late high temperature curing process, and the phase separation morphology is maintained in the cured CF/PAEK-P-BMI composites. Compared with CF/BMI composites, the CF/PAEK-P-BMI composites have a 69% reduction in damage area after impact, a 16.6% increase in compressive strength after impact, and a 34.4% reduction in impact pit depth.

     

  • loading
  • [1]
    益小苏, 李宏运. 航空液态成型复合材料关键技术研究[J]. 新材料产业, 2009(11):6-15. doi: 10.3969/j.issn.1008-892X.2009.11.003

    YI Xiaosu, LI Hongyun. Research on key technologies of aviation liquid forming composites[J]. Advanced Materials Industry,2009(11):6-15(in Chinese). doi: 10.3969/j.issn.1008-892X.2009.11.003
    [2]
    李伟东, 刘刚, 安学锋, 等. <italic>Z</italic>向流动RTM工艺树脂的流动浸润行为[J]. 复合材料学报, 2013, 30(6):82-89. doi: 10.3969/j.issn.1000-3851.2013.06.012

    LI Weidong, LIU Gang, AN Xuefeng, et al. Investigation of resin flowing and infiltration behavior during <italic>Z</italic> direction flowing RTM process[J]. Acta Materiae Compositae Sinica,2013,30(6):82-89(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.012
    [3]
    杨海冬, 曲春艳, 王德志, 等. 乙烯基橡胶增韧双马来酰亚胺树脂的研究[J]. 化学与粘合, 2014, 36(1):20-23.

    YANG Haidong, QU Chunyan, WANG Dezhi, et al. Study on toughening bismaleimide resin by vinyl rubber[J]. Chemistry and Adhesion,2014,36(1):20-23(in Chinese).
    [4]
    王超, 黄玉东, 张斌, 等. 液体端羧基丁腈橡胶改性双马来酰亚胺结构胶粘剂(Ⅰ)双马来酰亚胺树脂及胶粘剂的合成[J]. 高分子材料科学与工程, 2003, 19(2):86-88. doi: 10.3321/j.issn:1000-7555.2003.02.021

    WANG Chao, HUANG Yudong, ZHANG Bin, et al. CTBN modified BMI construction adhesive (Ⅰ) synthesis of BMI and the adhesive[J]. Polymeric Materials Science <italic>&</italic> Engineering,2003,19(2):86-88(in Chinese). doi: 10.3321/j.issn:1000-7555.2003.02.021
    [5]
    陈宇飞, 郭红缘, 耿成宝, 等. 聚醚醚酮和烯丙基化合物改性双马来酰亚胺复合材料微观结构及力学性能[J]. 复合材料学报, 2018, 35(11):3081-3087.

    CHEN Yufei, GUO Hongyuan, GENG Chengbao, et al. Microstructure and mechanical properties of bismaleimide composites modified with poly(etheretherketone) and allyl compounds[J]. Acta Materiae Compositae Sinica,2018,35(11):3081-3087(in Chinese).
    [6]
    BABKIN A V, ERDNI-GORYAEV E M, SOLOPCHENKO A V, et al. Mechanical and thermal properties of modified bismaleimide matrices toughened by polyetherimides and polyimide[J]. Polymers for Advanced Technologies,2016,27(6):774-780. doi: 10.1002/pat.3711
    [7]
    LIU M, DUAN Y, WANG Y, et al. Diazonium functionalization of graphene nanosheets and impact response of aniline modified graphene/bismaleimide nanocomposites[J]. Materials <italic>&</italic> Design,2014,53:466-474.
    [8]
    MANDHAKINI M, CHANDRAMOHAN A, JAYANTHI K, et al. Carbon black reinforced C8 ether linked bismaleimide toughened electrically conducting epoxy nanocomposites[J]. Materials <italic>&</italic> Design,2014,64:706-713.
    [9]
    肖杰, 顾轶卓, 李敏, 等. 多壁碳纳米管改性环氧树脂胶黏剂实验研究[J]. 复合材料学报, 2011, 28(3):20-26.

    XIAO Jie, GU Yizhuo, LI Min, et al. Experiment study on epoxy resin adhesive modified by multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica,2011,28(3):20-26(in Chinese).
    [10]
    益小苏, 安学锋, 唐邦铭, 等. 一种提高层状复合材料韧性的方法: 中国, ZL01100981.0[P]. 2011-03-26.

    YI Xiaosu, AN Xuefeng, TANG Bangming, et al. A method for improving toughness of layered composite material: China, ZL01100981.0[P]. 2011-03-26(in Chinese).
    [11]
    益小苏, 安学锋, 唐邦铭, 等. 一种增韧的复合材料层合板及其制备方法: 中国, CN1923506[P]. 2007-03-07.

    YI Xiaosu, AN Xuefeng, TANG Bangming, et al. A toughening composite laminate and its preparation: China, CN1923506[P]. 2007-03-07(in Chinese).
    [12]
    益小苏, 许亚洪, 程群峰, 等. 层间韧化的碳纤维复合材料层压板的力学性能[J]. 材料研究学报, 2008, 22(4):337-346. doi: 10.3321/j.issn:1005-3093.2008.04.001

    YI Xiaosu, XU Yahong, CHENG Qunfeng, et al. Interlaminar toughness and characteristic morphology of laminated graphite composites interlaminar-toughened[J]. Chinese Journal of Materials Research,2008,22(4):337-346(in Chinese). doi: 10.3321/j.issn:1005-3093.2008.04.001
    [13]
    RATNA D, SIMON G P. Thermomechanical properties and morphology of blends of a hydroxy-functionalized hyperbranched polymer and epoxy resin[J]. Polymer,2001,42(21):8833-8839. doi: 10.1016/S0032-3861(01)00341-X
    [14]
    QIN H, MATHER P T, BAEK J B, et al. Modification of bisphenol: A based bismaleimide resin (BPA-BMI) with an allyl-terminated hyperbranched polyimide (AT-PAEKI)[J]. Polymer,2006,47(8):2813-2821. doi: 10.1016/j.polymer.2006.02.062
    [15]
    CHENG Q F, FANG Z P, XU Y H, et al. Morphological and spatial effects on toughness and impact damage resistance of PAEK-toughened BMI and graphite fiber composite laminates[J]. Chinese Journal of Aeronautics,2009,22(1):87-96. doi: 10.1016/S1000-9361(08)60073-4
    [16]
    石凤, 段跃新, 梁志勇, 等. RTM专用双马来酰亚胺树脂体系化学流变特性[J]. 复合材料学报, 2006, 23(1):56-62.

    SHI F, DUAN Y X, LIANG Z Y, et al. Rheological behavior of a bismaleimide resin system for RTM process[J]. Acta Materiae Compositae Sinica,2006,23(1):56-62(in Chinese).
    [17]
    YI X S, CHENG Q F, LIU Z Z. Preform-based toughening technology for RTMable high-temperature aerospace composites[J]. Science China Technological Sciences,2012,55(8):2255-2263. doi: 10.1007/s11431-012-4949-8
    [18]
    LIU P, QU C Y, WANG D Z, et al. High-performance bismaleimide resins with low cure temperature for resin transfer molding process[J]. High Performance Polymers,2017,29(3):298-304. doi: 10.1177/0954008316642278
    [19]
    陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28(6):2-12.

    CHEN Xiangbao, ZHANG Baoyan, XING Liying. Application and development of advanced polymer matrix composites[J]. Materials China,2009,28(6):2-12(in Chinese).
    [20]
    ASTM International. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137M—17[S]. West Conshohocken: ASTM International, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (887) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return