Volume 37 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
SUN Yingying, ZHOU Luyao, HAN Yu, et al. Numerical analysis of the effect of air bubbles and gaps on thermal conductivity of hexagonal boron nitride/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2482-2488. doi: 10.13801/j.cnki.fhclxb.20200111.004
Citation: SUN Yingying, ZHOU Luyao, HAN Yu, et al. Numerical analysis of the effect of air bubbles and gaps on thermal conductivity of hexagonal boron nitride/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2482-2488. doi: 10.13801/j.cnki.fhclxb.20200111.004

Numerical analysis of the effect of air bubbles and gaps on thermal conductivity of hexagonal boron nitride/epoxy composites

doi: 10.13801/j.cnki.fhclxb.20200111.004
  • Received Date: 2019-11-13
  • Accepted Date: 2019-12-31
  • Available Online: 2020-01-13
  • Publish Date: 2020-10-15
  • Air bubbles and gaps in epoxy matrix composites seriously influence its thermal conductivity. Research on the effect of bubbles and gaps on the thermal conductivity of composites benefits to improve the accuracy of thermal conductive model and provides guidance for optimization of thermal conductivity. A numerical model of hexagonal boron nitride (h-BN)/epoxy composites with air bubbles and gaps was established by finite element method. The effects of bubble size and number, gap size and number on the thermal conductivity of h-BN/epoxy composites were systematically analyzed. This model was validated by other thermally conductive models and experimental data. The results show that with the increase of bubble size and number, the thermal conductivity of h-BN/epoxy composites decreases gradually, and a turning point occurs in the thermal conductivity curve changing with bubble size. Bubbles with diameter greater than the thickness of unit cell have a great impact on the thermal conductivity of h-BN/epoxy composites. With the increase of gap diameter and thickness, the thermal conductivity of h-BN/epoxy composites decreases slowly first, and then fast. Finally, the thermal conductivity of h-BN/epoxy composites decreases linearly. With the increase of the gap number, the thermal conductivity of h-BN/epoxy composites decreases gradually. The air gaps at the interface of h-BN and epoxy have a greater influence than those in the epoxy matrix.

     

  • loading
  • [1]
    BIGG D M. Thermally conductive polymer compositions[J]. Polymer Composites,1986,7(3):125-140. doi: 10.1002/pc.750070302
    [2]
    ZHOU W, QI S, LI H, et al. Study on insulating thermal conductive BN/HDPE composites[J]. Thermochimica Acta,2007,452(1):36-42. doi: 10.1016/j.tca.2006.10.018
    [3]
    DENG H, LIN L, JI M, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Progress in Polymer Science,2014,39(4):627-655. doi: 10.1016/j.progpolymsci.2013.07.007
    [4]
    LI Q, GUO Y, LI W, et al. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite[J]. Chemistry of Materials,2014,26(15):4459-4465. doi: 10.1021/cm501473t
    [5]
    SUN Y, CHEN L, LIN J, et al. Thermal conductivity of epoxy composites filled by thermally reduced graphite oxide with different reduction degree[J]. Journal of Composite Materials,2017,51(12):1743-1752. doi: 10.1177/0021998317696137
    [6]
    KIM K, KIM J. Fabrication of thermally conductive compo-site with surface modified boron nitride by epoxy wetting method[J]. Ceramics International,2014,40(4):5181-5189. doi: 10.1016/j.ceramint.2013.10.076
    [7]
    LIN F, BHATIA G S, FORD J D. Thermal conductivities of powder-filled epoxy resins[J]. Journal of Applied Polymer Science,2010,49(11):1901-1908.
    [8]
    YANG S Y, LIN W N, HUANG Y L, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites[J]. Carbon,2011,49(3):793-803. doi: 10.1016/j.carbon.2010.10.014
    [9]
    ZHANG T, SUN J, REN L, et al. Nacre-inspired polymer composites with high thermal conductivity and enhanced mechanical strength[J]. Composites Part A: Applied Science and Manufacturing,2019,121:92-99. doi: 10.1016/j.compositesa.2019.03.017
    [10]
    CHEN L, SUN Y Y, XU H F, et al. Analytic modeling for the anisotropic thermal conductivity of polymer composites containing aligned hexagonal boron nitride[J]. Compo-sites Science & Technology,2016,122:42-49.
    [11]
    CHEN C, XUE Y, LI Z, et al. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based compo-sites with high thermal conductivity via in-situ sintering of silver nanoparticles[J]. Chemical Engineering Journal,2019,369:1150-1160. doi: 10.1016/j.cej.2019.03.150
    [12]
    张宁. 轻质高强隔热复合材料制备及隔热性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    ZHANG Ning. The preparation and thermal insulation property study of a lightweight high-strength composite[D]. Harbin: Harbin Engineering University, 2018(in Chinese).
    [13]
    管胜男, 陈照峰, 马昊, 等. 铝箔气泡复合材料的制备及隔热性能研究[J]. 南京航空航天大学学报, 2018, 50(1):53-60.

    GUAN Shengnan, CHEN Zhaofeng, MA Hao, et al. Preparation of aluminum foil/bubble composite and its property on thermal insulation[J]. Journal of Nanjing University of Aeronautics & Astronautics,2018,50(1):53-60(in Chinese).
    [14]
    TANIMOTO M, YAMAGATA T, MIYATA K, et al. Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: Effects of filler particle size, aggregation, orientation, and polymer chain rigidity[J]. ACS Applied Materials& Interfaces,2013,5(10):4374-4382.
    [15]
    YU C, ZHANG J, LI Z, et al. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing,2017,98:25-31. doi: 10.1016/j.compositesa.2017.03.012
    [16]
    NIELSEN L E. Thermal conductivity of particulate-filled polymers[J]. Journal of Applied Polymer Science,2010,17(12):3819-3820.
    [17]
    HATTA H. Thermal diffusivities of composites with various types of filler[J]. Journal of Composite Materials,1992,26(5):612-625. doi: 10.1177/002199839202600501
    [18]
    CHEN L, SUN Y, LIN J, ET al. Modeling and analysis of synergistic effect in thermal conductivity enhancement of polymer composites with hybrid filler[J]. International Journal of Heat and Mass Transfer,2015,81:457-464. doi: 10.1016/j.ijheatmasstransfer.2014.10.051
    [19]
    NAN C W, LIU G, LIN Y, et al. Interface effect on thermal conductivity of carbon nanotube composites[J]. Applied Physics Letters,2004,85(16):3549-3551. doi: 10.1063/1.1808874
    [20]
    GU J, ZHANG Q, DANG J, et al. Thermal conductivity epoxy resin composites filled with boron nitride[J]. Polymers for Advanced Technologies,2012,23(6):1025-1028. doi: 10.1002/pat.2063
    [21]
    ZHANG Y F, ZHAO Y H, BAI S L, et al. Numerical simulation of thermal conductivity of graphene filled polymer composites[J]. Composites Part B: Engineering,2016,106:324-331. doi: 10.1016/j.compositesb.2016.09.052
    [22]
    KIM K, KIM J. Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field[J]. International Journal of Thermal Sciences,2016,100:29-36. doi: 10.1016/j.ijthermalsci.2015.09.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (970) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return