Volume 37 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
XIAO Huaqiang, ZHAO Sihao. Corrosion-wear behavior and synergy mechanism of Ti3AlC2-Al2O3/TiAl3 composite in molten aluminum[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2501-2511. doi: 10.13801/j.cnki.fhclxb.20200111.003
Citation: XIAO Huaqiang, ZHAO Sihao. Corrosion-wear behavior and synergy mechanism of Ti3AlC2-Al2O3/TiAl3 composite in molten aluminum[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2501-2511. doi: 10.13801/j.cnki.fhclxb.20200111.003

Corrosion-wear behavior and synergy mechanism of Ti3AlC2-Al2O3/TiAl3 composite in molten aluminum

doi: 10.13801/j.cnki.fhclxb.20200111.003
  • Received Date: 2019-11-27
  • Accepted Date: 2020-01-05
  • Available Online: 2020-01-13
  • Publish Date: 2020-10-15
  • Through comparing and analyzing the materials loss characteristics under pure corrosion, pure wear and corrosion-wear conditons, the corrosion-wear behavior and synergy mechanism between corrosion and wear of Ti3AlC2-Al2O3/TiAl3 composite in molten aluminum were investigated. The results show that the loss of corrosion-wear of Ti3AlC2-Al2O3/TiAl3 composite is two orders of magnitude lower than that of H13 steel. With the increase of load and speed, the wear of Ti3AlC2-Al2O3/TiAl3 composite changes from abrasive wear to adhesive wear. The synergy ratio of corrosion-wear is less than 47.5% in the experiments. Under the condition of low load or low velocity, the Ti3AlC2-Al2O3/TiAl3 composite even exhibits negative synergy. This is partly due to no intermetallic compound formed in the interface, but just a little Ti dissolved into the molten aluminum when the Ti3AlC2-Al2O3/TiAl3 composite corroded in Al melt. On the other hand, the interpenetrating structure of TiAl3 matrix and Al2O3 reinforcement improves the wear resistance of Ti3AlC2-Al2O3/TiAl3 composite in molten aluminum.

     

  • loading
  • [1]
    ZHANG X M, CHEN W P. Review on corrosion-wear resistance performance of materials in molten aluminum and its alloys[J]. Transactions of Nonferrous Metals Society of China,2015,25(6):1715-1731. doi: 10.1016/S1003-6326(15)63777-3
    [2]
    KIM H J, YOON B H, LEE C H. Sliding wear performance in molten Zn–Al bath of cobalt-based overlayers produced by plasma-transferred arc weld-surfacing[J]. Wear,2003,254(5–6):408-414.
    [3]
    ZHU Y L, SCHWAM D, WALLACE J F. et al. Evaluation of soldering, washout and thermal fatigue resistance of advanced metal materials for aluminum die-casting dies[J]. Materials Science and Engineering: A,2004,379(1):420-431.
    [4]
    XU G P, WANG K, DONG X P, et al. Multiscale corrosion-resistance mechanisms of novel ferrous alloys in dynamic aluminum melts[J]. Corrosion Science, Express,2019:108276.
    [5]
    ZHANG X M, LI X, CHEN W P. Interfacial reactions of duplex stainless steels with molten aluminum[J]. Surface and Interface Analysis,2015,47(6):648-656. doi: 10.1002/sia.5760
    [6]
    BALLOY D, TISSIER J C, GIORGI M L, et al. Corrosion mechanisms of steel and cast iron by molten aluminum[J]. Metallurgical & Materials Transactions A,2010,41(9):2366-2376.
    [7]
    JAMES G, WILLIAM L, PETERS K M. Development and application of refractory materials for molten aluminum applications[J]. International Journal of Applied Ceramic Technology,2008,5(3):265-277. doi: 10.1111/j.1744-7402.2008.02213.x
    [8]
    CASTRO M N I, ROBLES J M A, HERNANDEZ D A C, et al. Chemical interaction between Ba-celsian (BaAl2Si2O8) and molten aluminum[J]. Ceramic International,2016,42(2):3491-3496. doi: 10.1016/j.ceramint.2015.10.152
    [9]
    CASTRO M N I, ROBLES J M A, HERNANDEZ D A C, et al. Chemical interaction between SrAl2Si2O8 and molten aluminum[J]. Journal of the European Ceramic Society,2015,35(15):4287-4292. doi: 10.1016/j.jeurceramsoc.2015.07.022
    [10]
    ADABIFIROOZJAEI E, KOSHY P, SORRELL C C. Effects of V2O5, addition on the corrosion resistance of andalusite-based low-cement castables with molten Al-alloy[J]. Journal of the European Ceramic Society,2012,32(8):1463-1471. doi: 10.1016/j.jeurceramsoc.2012.01.023
    [11]
    ADABIFIROOZJAEI E, KOSHY P, SORRELL C C. Effects of AlPO4 addition on the corrosion resistance of andalusite-based low-cement castables with molten Al-alloy[J]. Journal of the European Ceramic Society,2013,33(6):1067-1075. doi: 10.1016/j.jeurceramsoc.2012.11.005
    [12]
    VOURLIAS G, PISTOFIDIS N, PSYLLAKI P, et al. Plasma-sprayed YSZ coatings: Microstructural features and resistance to molten metals[J]. Journal of Alloys and Compounds,2009(483):382-385.
    [13]
    罗哲民, 倪东惠, 易耀勇, 等. Ti/CrN、Ti/TiN/CrN镀层对8418热作模具钢耐铝合金熔体腐蚀性能的影响[J]. 腐蚀与防护, 2016, 37(5):388-391. doi: 10.11973/fsyfh-201605009

    LUO Zheming, NI Donghui, YI Yaoyong, et al. Effect of Ti/CrN and Ti/TiN/CrN coatings on the corrosion resistance of 8418 hot-working steel against Al alloy melt[J]. Corrosion & Protection,2016,37(5):388-391(in Chinese). doi: 10.11973/fsyfh-201605009
    [14]
    JOSHI V, KULKARNI K, SHIVPURI R, et al. Dissolution and soldering behavior of nitride hot working steel with multilayer LAFAD PVD coatings[J]. Surface and Coatings Technology,2001,146-147:338-343. doi: 10.1016/S0257-8972(01)01426-8
    [15]
    陈维平, 吴晶, 罗洪峰. 一种砝码加载环块式腐蚀磨损试验机: 中国, CN101975708B[P]. 2012-05-09.

    CHEN Weiping, WU Jing, LUO Hongfeng. Weight loading ring-piece type corrosive wear tester: China, CN101975708B[P]. 2012-05-09(in Chinese).
    [16]
    陈维平, 吴晶, 罗洪峰. 新型高温金属腐蚀-磨损试验机及其应用[J]. 特种铸造及有色合金, 2012, 32(10):883-885.

    CHEN Weiping, WU Jing, LUO Hongfeng. A new high temperature test rig for corrosion-wear in molten metal and its application[J]. Special Casting & Nonferrous Alloys,2012,32(10):883-885(in Chinese).
    [17]
    陈维平, 方思聪, 曾勇, 等. 钨和H13钢的耐Al液腐蚀−磨损性能与机理[J]. 中国有色金属学报, 2013, 23(11):3127-3134.

    CHEN Weiping, FANG Sicong, ZENG Yong, et al. Corrosion-wear resistant performance and mechanisms of tungsten and H13 steel in molten aluminum[J]. The Chinese Journal of Nonferrous Metals,2013,23(11):3127-3134(in Chinese).
    [18]
    吴晶. 耐Al液腐蚀—磨损金属材料的筛选及其试验设备的研制[D]. 广州: 华南理工大学, 2012.WU Jing. The screening experiments of corrosion-wear resistant metal materials in molten aluminum and device development[D]. Guangzhou: South China University of Technology, 2012(in Chinese).
    [19]
    肖华强, 陈维平. H13钢在Al液中的熔蚀-磨损行为与交互作用机理[J]. 中国有色金属学报, 2017, 27(1):89-96.

    XIAO Huaqiang, CHEN Weiping. Corrosion-wear behavior and synergy mechanism of H13 tool steel in molten aluminum[J]. The Chinese Journal of Nonferrous Metals,2017,27(1):89-96(in Chinese).
    [20]
    CHEN W P, XIAO H Q, FU Z Q, et al. Reactive hot pressing and mechanical properties of TiAl3-Ti3AlC2-Al2O3 in situ composite[J]. Materials and Design,2013,49:929-934. doi: 10.1016/j.matdes.2013.02.053
    [21]
    李晓梅, 肖华强, 曾勇, 等. 新型Ti3AlC2-Al2O3/ TiAl3复合材料的组织结构与性能[J]. 复合材料学报, 2015, 32(1):108-116.

    LI Xiaomei, XIAO Huaqiang, ZENG Yong, et al. Microstructure and properties of new type Ti3AlC2-Al2O3/TiAl3 composites[J]. Acta Materiae Compositae Sinica,2015,32(1):108-116(in Chinese).
    [22]
    XIAO H Q, CHEN W P, LIU Z. Corrosion resistance of 91W-6Ni-3Fe refractory metal, TiAl compound and iron based alloys in molten aluminum[J]. Transactions of Nonferrous Metals Society of China,2012,22(9):2320-2326. doi: 10.1016/S1003-6326(11)61466-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (789) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return