Volume 37 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
JIN Wenqiang, ZHAO Jianchang, WANG Qi, et al. Effects of freeze-thaw cycles on interfacial bonding property of CFRP-sintered clay brick[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2294-2302. doi: 10.13801/j.cnki.fhclxb.20200111.002
Citation: JIN Wenqiang, ZHAO Jianchang, WANG Qi, et al. Effects of freeze-thaw cycles on interfacial bonding property of CFRP-sintered clay brick[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2294-2302. doi: 10.13801/j.cnki.fhclxb.20200111.002

Effects of freeze-thaw cycles on interfacial bonding property of CFRP-sintered clay brick

doi: 10.13801/j.cnki.fhclxb.20200111.002
  • Received Date: 2019-10-30
  • Accepted Date: 2019-12-20
  • Available Online: 2020-01-13
  • Publish Date: 2020-09-15
  • In order to investigate the effects of freeze-thaw cycles on the interface bonding performance of carbon fiber reinforced polymer composite(CFRP)-sintered clay brick, a single-sided shear test was conducted on the test specimens after different times of freeze-thaw cycles by simulating the natural freeze-thaw environment. The test results show that under the action of freeze-thaw cycles, the bond performance of the CFRP-sintered clay brick has been obviously degraded. Therefore, as the number of freeze-thaw cycles increases, the interface bearing capacity and shear stress continuously decrease. The distribution of the interface shear stress under different freeze-thaw times is similar, and they all show that the shear stress gradually passes from the loading end to the free end, while the effective transfer length doesn’t change significantly. Based on the existing interface theory, the interface bond-slip model considering the freeze-thaw cycles was proposed according to the experiment. Through contrast analysis, the model can well reflect the degradation law of the interface bond performance under the action of freeze-thaw cycles.

     

  • loading
  • [1]
    SATO Y, KIMURA K, KOBATAKE Y. Bond behavior between CFRP sheet and concrete (Part 1)[J]. Journal of Structural and Construction Engineering,1997,500:75-82.
    [2]
    邓宗才, 牛翠兵, 杜修力, 等. FRP加固混凝土结构耐久性研究[J]. 北京工业大学学报, 2006, 32(2):133-137.

    DENG Zongcai, NIU Cuibing, DU Xiuli, et al. Durability of FRP strengthened concrete structure[J]. Journal of Beijing University of Technology,2006,32(2):133-137(in Chinese).
    [3]
    滕锦光, 陈建飞, SMITH S T, 等. FRP加固混凝土结构[M]. 北京: 中国建筑工业出版社, 2004.

    TENG Jinguang, CHEN Jianfei, SMITH S T, et al. FRP reinforced concrete structure[M]. Beijing: China Architecture & Building Press, 2004(in Chinese).
    [4]
    冯鹏, 陆新征, 叶列平. 纤维增强复合材料建设工程应用技术[M]. 北京: 中国建筑工业出版社, 2009.

    FENG Peng, LU Xinzheng, YE Lieping. Infrastructure application of FRP composites[M]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [5]
    PETERSEN R B, MASIA M J, SERACINO R. In-plane shear behavior of masonry panels strengthened with NSM CFRP strips Ⅱ: Finite-element model[J]. Journal of Composites for Construction,2010,14(6):764-774. doi: 10.1061/(ASCE)CC.1943-5614.0000137
    [6]
    MAHINI S. S. Smeared crack material modeling for the nonlinear analysis of CFRP-strengthened historical brick vaults with adobe piers[J]. Construction and Building Materials,2015,74:201-218. doi: 10.1016/j.conbuildmat.2014.10.033
    [7]
    谷倩, 彭波, 刘卫国, 等. 碳纤维布抗震加固开门窗洞口砌体墙片的试验研究与受剪承载力分析[J]. 建筑结构学报, 2007, 28(1):80-88. doi: 10.3321/j.issn:1000-6869.2007.01.012

    GU Qian, PENG Bo, LIU Weiguo, et al. Experimental investigations and analysis of shear capacity ofmasonry wallswith window and door openings reinforced with CFRP sheets[J]. Journal of Building Structures,2007,28(1):80-88(in Chinese). doi: 10.3321/j.issn:1000-6869.2007.01.012
    [8]
    郭樟根, 刘佳亮, 孙伟民, 等. FRP加固砌体结构的研究与应用[J]. 南京工业大学学报(自然科学版), 2008(1):105-110.

    GUO Zhanggen, LIU Jialiang, SUN Weimin, et al. Research and application of FRP reinforced masonry structures[J]. Journal of Nanjing University of Technology(Natural Science Edition),2008(1):105-110(in Chinese).
    [9]
    王作虎, 杨文雄, 刘杜. FRP布加固砌体结构界面粘结性能的研究进展[J]. 玻璃钢/复合材料, 2018(1):103-107. doi: 10.3969/j.issn.1003-0999.2018.01.017

    WANG Zuohu, YANG Wenxiong, LIU Du. Research progress on interface bonding properties ofmasonry structures strengthened by FRP sheets[J]. Fiber Reinforced Plastics/Composites,2018(1):103-107(in Chinese). doi: 10.3969/j.issn.1003-0999.2018.01.017
    [10]
    宦文娟, 张云升, 刘国建, 等. 冻融环境下黏土红砖的性能劣化规律与微结构演化[J]. 东南大学学报, 2014, 44(2):401-405.

    HUAN Wenjuan, ZHANG Yunsheng, LIU Guojian, et al. Performance deterioration and microstructure evolution ofclay brick submitted to freeze-thaw cycles[J]. Journal of Southeast University(Natural Science Edition),2014,44(2):401-405(in Chinese).
    [11]
    王亮, 詹予忠, 沈国鹏, 等. 粘土砖的腐蚀劣化机理[J]. 四川建筑科学研究, 2008, 34(1):142-145. doi: 10.3969/j.issn.1008-1933.2008.01.041

    WANG Liang, ZHAN Yuzhong, SHEN Guopeng, et al. The weathering and deteriorating mechanism of clay brick[J]. Sichuan Building Science,2008,34(1):142-145(in Chinese). doi: 10.3969/j.issn.1008-1933.2008.01.041
    [12]
    童丽萍, 雷小娟. 黄河淤泥烧结多孔砖抗冻性能研究[J]. 新型建筑材料, 2008, 35(10):23-26. doi: 10.3969/j.issn.1001-702X.2008.10.008

    TONG Liping, LEI Xiaojuan. Study on frost resistance of Yellow River silt sintered cellular brick[J]. New Building Materials,2008,35(10):23-26(in Chinese). doi: 10.3969/j.issn.1001-702X.2008.10.008
    [13]
    中国工程建设标准化协会. 碳纤维片材加固混凝土结构技术规程: CECS 146—2003[S]. 北京: 中国计划出版社, 2007.

    China Association for Engineering Construction Standardization. Technical specification for strengthening concrete structures with carbon fiber reinforced polymer laminate: CECS 146—2003[S]. Beijing: China Planning Press, 2007(in Chinese).
    [14]
    中国国家标准化管理委员会. 砌墙砖试验方法: GB/T 2542—2012[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People’s Republic of China. Test methods for wall bricks: GB/T 2542—2012[S]. Beijing: China Standards Press, 2013(in Chinese).
    [15]
    王吉忠, 杨俊龙, 崔文佳. 盐溶液干湿循环对 CFRP-混凝土界面粘结性能影响[J]. 复合材料学报, 2018, 35(8):2055-2064.

    WANG Jizhong, YANG Junlong, CUI Wenjia. Effect of wet and dry cycles in salt solution on the interfacial bonding property of CFRP-concrete[J]. Acta Materiae Compositae Sinica,2018,35(8):2055-2064(in Chinese).
    [16]
    XU T, HE Z J, TANG C A, et al. Finite element analysis of width effect in interface debonding of FRP plate bonded to concrete[J]. Finite Elements in Analysis <italic>&</italic> Design,2015,93:30-41.
    [17]
    ZHENG X H, HUANG P Y, GUO X Y, et al. Experimental study on bond-slip constitutive relation between CFL and concrete[J]. Applied Mechanics <italic>&</italic> Materials,2013,302:359-364.
    [18]
    廖志刚, 姚谏, 汪光满. 表面粘贴FRP加固混凝土单剪粘结试件的拉剪破坏[J]. 科技通报, 2010, 26(6):919-925. doi: 10.3969/j.issn.1001-7119.2010.06.024

    LIAO Zhigang, YAO Jian, WANG Guangman. Analysis of tension-shear failure on externally bonded FRP single shear test[J]. Bulletin of Science and Technology,2010,26(6):919-925(in Chinese). doi: 10.3969/j.issn.1001-7119.2010.06.024
    [19]
    NAKABA K, KANAKUBO T, FURUTA T, et al. Bond behavior between fiber-reinforced polymer laminates and concrete[J]. ACI Structural Journal,2001,98(3):359-367.
    [20]
    YUN Y, WU Y F. Durability of CFRP-concrete joints under freeze-thaw cycling[J]. Cold Regions Science and Technology,2011,65(3):401-412. doi: 10.1016/j.coldregions.2010.11.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (823) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return