Volume 37 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
YANG Fengxiang, CHEN Jingfen, CHEN Shanfu, et al. Failure strength prediction of composite laminates using 3D damage constitutive model with nonlinear shear effects[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2207-2222. doi: 10.13801/j.cnki.fhclxb.20200110.002
Citation: YANG Fengxiang, CHEN Jingfen, CHEN Shanfu, et al. Failure strength prediction of composite laminates using 3D damage constitutive model with nonlinear shear effects[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2207-2222. doi: 10.13801/j.cnki.fhclxb.20200110.002

Failure strength prediction of composite laminates using 3D damage constitutive model with nonlinear shear effects

doi: 10.13801/j.cnki.fhclxb.20200110.002
  • Received Date: 2019-10-30
  • Accepted Date: 2020-01-02
  • Available Online: 2020-01-10
  • Publish Date: 2020-09-15
  • Based on the continuum damage mechanics, a 3D damage constitutive model which takes into account the nonlinear shear behavior of composites and material properties degradation due to damage development was proposed. The model differentiates between different failure modes, such as fiber failure mode, matrix failure mode and delamination. The damage variables corresponding to each failure mode were defined. The onsets of fiber damage, matrix damage and delamination of composite laminates were predicted using maximum stress failure criteria, Puck’s matrix failure criteria and Hou’s delamination criteria, respectively. In order to predict the angle of fracture surface in Puck’s matrix fracture failure theory, a selective parabola algorithm was proposed and coded using Matlab procedure. Compared with the Puck’s algorithm and the selective range golden section search algorithm, it shows that the selective parabola algorithm effectively reduces the number of calculations and improves the calculation efficiency and accuracy. A strain-driven explicit integration algorithm for the proposed material constitutive model was developed to update stresses and solution dependent state variables. The user-defined material subroutine VUMAT containing the numerical integration algorithm was coded and implemented in the finite element procedure Abaqus v6.14. The efficiency of the material constitutive model was demonstrated through progressive failure analyses of AS4 carbon fiber/3501-6 epoxy composite laminates, the mechanical behavior of which demonstrates significant nonlinear shear effects. The numerical results show that the proposed model is able to predict the mechanical behavior and failure strength of composites with sufficient accuracy. The proposed approach provides an efficient method for the design of composite components and structures.

     

  • loading
  • [1]
    LAFARIE-FRENOT M C, TOUCHARD F. Comparative in-plane shear behaviour of long-carbon-fibre composites with thermoset or thermoplastic matrix[J]. Composites Science and Technology,1994,52(3):417-425. doi: 10.1016/0266-3538(94)90176-7
    [2]
    CARLSSON L A, ARONSSON C G, BÄCKLUND J. Notch sensitivity of thermoset and thermoplastic laminates loaded in tension[J]. Journal of Materials Science,1989,24(5):1670-1682. doi: 10.1007/BF01105690
    [3]
    CHANG F K, LESSARD L B. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings Part I: Analysis[J]. Journal of Composite Materials,1991,25(1):2-43. doi: 10.1177/002199839102500101
    [4]
    TAN S C. A progressive failure model for composite laminates containing openings[J]. Journal of Composite Materials,1991,25(5):556-577. doi: 10.1177/002199839102500505
    [5]
    MATZENMILLER A, LUBLINER J, TAYLOR R L. A constitutive model for anisotropic damage in fiber-composites[J]. Mechanics of Materials,1995,20(2):125-152. doi: 10.1016/0167-6636(94)00053-0
    [6]
    龙舒畅. 含初始缺陷复合材料的低速冲击损伤与剩余强度研究[D]. 广州: 华南理工大学, 2014.

    LONG S C. The research on low energy impact damage and residual strength of composites with initial imperfection[D]. Guangzhou: South China University of Technology, 2014(in Chinese).
    [7]
    李力, 黄哲峰, 杨增钦, 等. 基于三维Puck失效准则及唯象模量退化的复合材料臂杆屈曲分析[J]. 复合材料学报, 2019, 36(2):42-52.

    LI L, HUANG Z F, YANG Z Q, et al. Bulking analysis of composite arm based on 3D Puck failure criterion and phenomenological modulus degradation method[J]. Acta Materiae Compositae Sinica,2019,36(2):42-52(in Chinese).
    [8]
    吴义韬, 姚卫星, 吴富强. 复合材料层合板面内渐进损伤分析的CDM模型[J]. 力学学报, 2014, 46(1):94-104. doi: 10.6052/0459-1879-13-106

    WU Y T, YAO W X, WU F Q. CDM model for intarlaminar progressive damage analysis of composite laminates[J]. Chinese Journal of Theoretical and Applied Mechanics,2014,46(1):94-104(in Chinese). doi: 10.6052/0459-1879-13-106
    [9]
    李秋漳, 姚卫星, 陈方. 复合材料层合板缺口强度的CDM三维数值模型[J]. 复合材料学报, 2016, 33(12):2766-2774.

    LI Q Z, YAO W X, CHEN F. CDM three-dimensional numerical model for notched strength of composite laminates[J]. Acta Materiae Compositae Sinica,2016,33(12):2766-2774(in Chinese).
    [10]
    PAUL B. A modification of the Coulomb-Mohr theory of fracture[J]. Journal of Applied Mechanics,1961,28(2):259-268. doi: 10.1115/1.3641665
    [11]
    PUCK A, SCHRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[M]//HINTON M J, KADDOUR A S, SODEN P D. Failure criteria in fibre-reinforced-polymer composites. Oxford: Elsevier, 2004: 832-876.
    [12]
    DEUSCHLE H M, KRÖPLIN B H. Finite element implementation of Puck’s failure theory for fibre-reinforced composites under three-dimensional stress[J]. Journal of Composite Materials,2012,46(19-20):2485-2513. doi: 10.1177/0021998312451480
    [13]
    XIAO X R. Modeling energy absorption with a damage mechanics based composite material model[J]. Journal of Composite Materials,2009,43(5):427-444. doi: 10.1177/0021998308097686
    [14]
    PINHO S T, IANNUCCI L, ROBINSON P. Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking Part I: Development[J]. Composites Part A: Applied Science and Manufacturing,2006,37(1):63-73.
    [15]
    WIEGAND J, PETRINIC N, ELLIOTT B. An algorithm for determination of the fracture angle for the three-dimensional Puck matrix failure criterion for UD composites[J]. Composites Science and Technology,2008,68(12):2511-2517. doi: 10.1016/j.compscitech.2008.05.004
    [16]
    SCHIRMAIER F J, WEILAND J, KÄRGER L, et al. A new efficient and reliable algorithm to determine the fracture angle for Puck’s 3D matrix failure criterion for UD composites[J]. Composites Science and Technology,2014,100:19-25. doi: 10.1016/j.compscitech.2014.05.033
    [17]
    HOU J P, PETRINIC N, RUIZ C. A delamination criterion for laminated composites under low-velocity impact[J]. Composites Science and Technology,2001,61(14):2069-2074.
    [18]
    CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials,1987,21(9):834-855. doi: 10.1177/002199838702100904
    [19]
    DEUSCHLE H M, PUCK A. Application of the Puck failure theory for fibre-reinforced composites under three-dimensional stress: Comparison with experimental results[J]. Journal of Composite Materials,2013,47(6-7):827-846. doi: 10.1177/0021998312462158
    [20]
    贾利勇, 廖斌斌, 于龙, 等. 基于Puck理论的复合材料层合板横向剪切失效分析[J]. 复合材料学报, 2019, 36(10):2286-2293.

    JIA L Y, LIAO B B, YU L, et al. Failure analysis of composite laminates with Puck’s theory under transverse shear load[J]. Acta Materiae Compositae Sinica,2019,36(10):2286-2293(in Chinese).
    [21]
    BAŽANT Z P, OH B H. Crack band theory for fracture of concrete[J]. Matériaux et Construction,1983,16(3):155-177. doi: 10.1007/BF02486267
    [22]
    DEUSCHLE H M. 3D failure analysis of UD fibre reinforced composites: Puck’s theory within FEA[D]. Stuttgart: University of Stuttgart, 2010.
    [23]
    CHEN J F, MOROZOV E V, SHANKAR K. Simulating progressive failure of composite laminates including in-ply and delamination damage effects[J]. Composites Part A: Applied Science and Manufacturing,2014,61:185-200. doi: 10.1016/j.compositesa.2014.02.013
    [24]
    李彪. 基于失效机理的复合材料层合板强度分析方法[D]. 西安: 西北工业大学, 2015.

    LI B. Failure mechanism based strength analysis method for laminated composites[D]. Xi’an: Northwestern Polytechnical University, 2015(in Chinese).
    [25]
    SHI Y, SWAIT T, SOUTIS C. Modelling damage evolution in composite laminates subjected to low velocity impact[J]. Composite Structures,2012,94(9):2902-2913. doi: 10.1016/j.compstruct.2012.03.039
    [26]
    罗鹏. 含率相关非线性剪切关系的复合材料损伤模型[D]. 广州: 暨南大学, 2018.

    LUO P. Composite material damage model including strain rate-dependent nonlinear shear stress strain relationship[D]. Guangzhou: Jinan University, 2018(in Chinese).
    [27]
    DANIEL I M, WERNER B T, FENNER J S. Strain-rate-dependent failure criteria for composites[J]. Composites Science and Technology,2011,71(3):357-364. doi: 10.1016/j.compscitech.2010.11.028
    [28]
    陈静芬. 基于弹塑性损伤本构模型的复合材料层合板破坏荷载预测[J]. 复合材料学报, 2017, 34(4):545-557.

    CHEN J F. Failure loads prediction of composite laminates using a combined elastoplastic damage model[J]. Acta Materiae Compositae Sinica,2017,34(4):545-557(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (1154) PDF downloads(138) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return