Volume 37 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
YUN Xinyao, LIANG Chaohu, SONG Weike. Mode II delamination property and damage evolution characterization of twill woven carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2452-2462. doi: 10.13801/j.cnki.fhclxb.20200102.002
Citation: YUN Xinyao, LIANG Chaohu, SONG Weike. Mode II delamination property and damage evolution characterization of twill woven carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2452-2462. doi: 10.13801/j.cnki.fhclxb.20200102.002

Mode II delamination property and damage evolution characterization of twill woven carbon fiber/epoxy resin composites

doi: 10.13801/j.cnki.fhclxb.20200102.002
  • Received Date: 2019-11-27
  • Accepted Date: 2019-12-25
  • Available Online: 2020-01-02
  • Publish Date: 2020-10-15
  • This paper deals with the delamination behaviors and damage evolution modes of woven composites under quasi-static/cyclic loading. Mode II delamination propagation tests were conducted on twill woven CF3052/3238A carbon fiber/epoxy resin composites subjected to quasi-static/cyclic loading. Experimental results demonstrate that due to the latitudinal fiber bundles, a periodical retardation occurs during interlaminar delamination propagation accompanying with intralaminar debonding between latitudinal fiber bundles. Although the crack growth rate for mode II delamination of the twill woven CF3052/3238A carbon fiber/epoxy resin composites follows the Paris model, the variation law in fatigue driven force under load-control mode differs from that under displacement-control mode. That is, fatigue driven force changes parabolic monotonously under load-control mode, but wavily under displacement-control mode. Fatigue driven model is apt to characterize the damage evolution of the twill woven CF3052/3238A carbon fiber/epoxy resin composites under load-control and displacement-control modes. Good correlation is achieved between the proposed model and experimental results.

     

  • loading
  • [1]
    BRUNNER A J, STELZER S, PINTER G, et al. Mode II fatigue delamination resistance of advanced fiber-reinforced polymer-matrix laminates: Towards the development of a standardized test procedure[J]. International Journal of Fatigue,2013,50:57-62. doi: 10.1016/j.ijfatigue.2012.02.021
    [2]
    LANDRY B, LAPLANTE G, LEBLANC L R. Environmental effects on mode II fatigue delamination growth in an aerospace grade carbon/epoxy composite[J]. Composites Part A: Applied Science and Manufacturing,2012,43(3):475-485. doi: 10.1016/j.compositesa.2011.11.015
    [3]
    STELZER S, PINTER G, BRUNNER A J. Comparison of quasi-static and cyclic fatigue delamination resistance of carbon fiber reinforced polymer-matrix laminates under different mode loading[J]. Procedia Materials Science,2014,3:1087-1092. doi: 10.1016/j.mspro.2014.06.177
    [4]
    NAKAI Y, HIWA C. Effects of loading frequency and environment on delamination fatigue crack growth of CFRP[J]. International Journal of Fatigue,2002,24(2):161-170.
    [5]
    YUN X, XIONG J, SHENOI R A. Fatigue-driven model for mode II interlaminar delamination propagation of fibre/epoxy-reinforced composite laminates under three-point end-notched flexure[J]. Journal of Composite Materials,2014,49(22):2779-2787.
    [6]
    BIENIAŚ J, DADEJ K. Fatigue delamination growth of carbon and glass reinforced fiber metal laminates in fracture mode II[J]. International Journal of Fatigue,2020,130:105267.1-105267.11. doi: 10.1016/j.ijfatigue.2019.105267
    [7]
    GONG Y, ZHANG B, SUPRATIK M, et al. Experimental study on delamination migration in multidirectional laminates under mode II static and fatigue loading, with comparison to mode I[J]. Composite Structures,2018,201(1):683-698.
    [8]
    GILL A F, ROBINSON P, PINHO S. Effect of variation in fibre volume fraction on modes I and II delamination behaviour of 5HS woven composites manufactured by RTM[J]. Composites Science and Technology,2009,69(14):2368-2375. doi: 10.1016/j.compscitech.2009.02.008
    [9]
    SHIN S, JANG J. Fractographical analysis on the mode II delamination in woven carbon fiber reinforced epoxy composites[J]. Journal of Materials Science,1999,34(21):5299-5306. doi: 10.1023/A:1004740703756
    [10]
    SHINDO Y, TAKEDA T, NARITA F, et al. Delamination growth mechanisms in woven glass fiber reinforced polymer composites under mode II fatigue loading at cryogenic temperatures[J]. Composites Science and Technology,2009,69(11):1904-1911.
    [11]
    朱华东, 矫桂琼, 杨宝宁. 缝合复合材料II型层间断裂特性研究[J]. 复合材料学报, 2001, 18(2):85-89. doi: 10.3321/j.issn:1000-3851.2001.02.020

    ZHU Huadong, JIAO Guiqiong, YANG Baoning. Investigation into the effect of stitching in CFRP on Mode II delamination toughness[J]. Acta Materiae Compositae Sinica,2001,18(2):85-89(in Chinese). doi: 10.3321/j.issn:1000-3851.2001.02.020
    [12]
    王雅娜, 陈新文, 龚愉. 复合材料0°/45°层间界面Ⅰ型、Ⅱ型和Ⅰ/Ⅱ混合型分层实验研究[J]. 航空材料学报, 2018, 38(6):83-88.

    WANG Yana, CHEN Xinwen, GONG Yu. Experimental study on delamination of composite laminates with 0°/45° interface under mode I, mode II and mixed-mode I/II loading[J]. Journal of Aeronautical Materials,2018,38(6):83-88(in Chinese).
    [13]
    PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Fluids Engineering,1963,85(4):528-533.
    [14]
    FORMAN R G, KEARNEY V E, ENGLE R M. Numerical analysis of crack propagation in cyclic-loaded structures[J]. Journal of Fluids Engineering,1967,89(3):459-463.
    [15]
    ELBER W. The significance of fatigue crack closure[J]. ASTM Special Technical Publication,1971,486:230-243.
    [16]
    WALKER K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[M]//Effects of Environment and Complex Load History on Fatigue Life. Philadelphia: ASTM, 1970: 1-14.
    [17]
    YAO L, ALDERLIESTEN R C, ZHAO M, et al. Discussion on the use of the strain energy release rate for fatigue delamination characterization[J]. Composites Part A: Applied Science and Manufacturing,2014,66:65-72. doi: 10.1016/j.compositesa.2014.06.018
    [18]
    RANS C, ALDERLIESTEN R, BENEDICTUS R. Misinterpreting the results: How similitude can improve our understanding of fatigue delamination growth[J]. Composites Science and Technology,2011,71(2):230-238. doi: 10.1016/j.compscitech.2010.11.010
    [19]
    YAO L, ALDERLIESTEN R C, JONES R, et al. Delamination fatigue growth in polymer-matrix fibre composites: A methodology for determining the design and lifing allowable[J]. Composite Structures,2018,196:8-20. doi: 10.1016/j.compstruct.2018.04.069
    [20]
    NEWMAN J J C. A crack opening stress equation for fatigue crack growth[J]. International Journal of Fracture,1984,24(4):R131-R135. doi: 10.1007/BF00020751
    [21]
    SHIVAKUMAR K, CHEN H, ABALI F, et al. A total fatigue life model for mode I delaminated composite laminates[J]. International Journal of Fatigue,2006,28(1):33-42. doi: 10.1016/j.ijfatigue.2005.04.006
    [22]
    王永廉, 吴永瑞. 一个适用性广泛的疲劳裂纹扩展速率表达式[J]. 航空学报, 1987, 8(4):191-197. doi: 10.3321/j.issn:1000-6893.1987.04.001

    WANG Yonglian, WU Yongrui. A universally applicable fatigue-crack-growth-rate descripttion[J]. Journal of Aeronautics,1987,8(4):191-197(in Chinese). doi: 10.3321/j.issn:1000-6893.1987.04.001
    [23]
    JONES R, STELZER S, BRUNNER A J. Mode I, II and Mixed Mode I/II delamination growth in composites[J]. Compo-site Structures,2014,110:317-324. doi: 10.1016/j.compstruct.2013.12.009
    [24]
    HARTMAN A, SCHIJVE J. The effects of environment and load frequency on the crack propagation law for macro fatigue crack growth in aluminium alloys[J]. Engineering Fracture Mechanics,1970,1(4):615-631. doi: 10.1016/0013-7944(70)90003-2
    [25]
    DAHLEN C, SPRINGER G S. Delamination growth in composites under cyclic loads[J]. Journal of Composite Materials,1994,28(8):732-781. doi: 10.1177/002199839402800803
    [26]
    HILTON H H, YI S, DANYLUK M J. Probabilistic analysis of delamination onset in linear anisotropic elastic and viscoelastic composite columns[J]. Reliability Engineering & System Safety,1997,56(3):237-248.
    [27]
    FIGIEL Ł, KAMIŃ SKI M. Numerical probabilistic approach to sensitivity analysis in a fatigue delamination problem of a two layer composite[J]. Applied Mathematics and Computation,2009,209(1):75-90. doi: 10.1016/j.amc.2008.06.039
    [28]
    ARGÜELLES A, CORONADO P, CANTELI A F, et al. Using a statistical model for the analysis of the influence of the type of matrix carbon-epoxy composites on the fatigue delamination under modes I and II of fracture[J]. International Journal of Fatigue,2013,56:54-59. doi: 10.1016/j.ijfatigue.2013.08.001
    [29]
    KAGEYAMA K, KIMPARA I, SUZUKI T, et al. Effects of test conditions on mode II interlaminar fracture toughness of four-point ENF specimens[J]. Energy,1999,2(2):362-370.
    [30]
    SUN X, DAVIDSON B D. Numerical evaluation of the effects of friction and geometric nonlinearities on the energy release rate in three-and four-point bend end-notched flexure tests[J]. Engineering Fracture Mechanics,2006,73(10):1343-1361. doi: 10.1016/j.engfracmech.2005.11.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (1004) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return