Volume 37 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
GUO Lijun, LU Fangzhou, LI Xiang, et al. Tensile failure mechanism of carbon fiber/epoxy composite winding joint[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2163-2172. doi: 10.13801/j.cnki.fhclxb.20200102.001
Citation: GUO Lijun, LU Fangzhou, LI Xiang, et al. Tensile failure mechanism of carbon fiber/epoxy composite winding joint[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2163-2172. doi: 10.13801/j.cnki.fhclxb.20200102.001

Tensile failure mechanism of carbon fiber/epoxy composite winding joint

doi: 10.13801/j.cnki.fhclxb.20200102.001
  • Received Date: 2019-10-23
  • Accepted Date: 2019-12-13
  • Available Online: 2020-01-02
  • Publish Date: 2020-09-15
  • The axial tensile failure mechanism of carbon fiber/epoxy composite winding joint was studied by means of experiment and simulation. Based on ABAQUS, the continuum damage model and cohesive zone model were used to simulate each part and interface of the carbon fiber/epoxy composite winding joint, respectively. The progressive damage model of the carbon fiber/epoxy composite was established by writing user-defined material subroutine(UMAT). As a result, the stress distribution and load-displacement curve of the carbon fiber/epoxy composite winding joint were obtained and the failure mechanism of the structure was determined by comparison with the experimental results. The results show that the calculated damage position and failure modes of the carbon fiber/epoxy composite winding joint agree well with the experimental results, and the difference between the calculated value and test value of the failure load is small, which proves the validity of the simulation analysis method. By comparing the failure modes, it is found that under tensile load, the loop plies are the main bearing component, and the curved end of which is the position where the stress is concentrated. The fiber fracture starts from here and gradually spreads outward until the loop plies fracture, which leads to the structural damage.

     

  • loading
  • [1]
    杨乃宾, 章怡宁. 复合材料飞机结构设计[M]. 北京: 航空工业出版社, 2002.

    YANG N B, ZHANG Y N. Composite structure design of aircraft[M]. Beijing: Aviation Industry Press, 2002(in Chinese).
    [2]
    HOLZWARTH R C. The structural cost and weight reduction potential of more unitized aircraft structure: AIAA-98-1872[R]. Reston: American Institute of Aeronautics and Astronautics, 1998.
    [3]
    BUTLER B, FELLOW A. Composites affordability initiative: AIAA-2000-1379[R]. Reston: American Institute of Aeronautics and Astronautics, 2000.
    [4]
    ENGELSTAD S P, BERRY O T, RENIERI G D, et al. A high fidelity composite bonded joint analysis validation study Part Ⅰ: Analysis: AIAA-2005-2166[R]. Reston: American Institute of Aeronautics and Astronautics, 2005.
    [5]
    PHILIPS H J, SHENOI R A. Damage tolerance of laminated tee-joints in FRP structures[J]. Composites Part A: Applied Science <italic>&</italic> Manufacturing,1998,29 (4):465-478.
    [6]
    王国平, 黄领才, 王冠. 复合材料层板多钉连接设计与试验研究[C]//第19届全国直升机年会论文. 哈尔滨: 中国航空学会, 2003: 65-70.

    WANG G P, HUANG L C, WANG G. Design and experimental research of composite laminate multi-bolted joint[C]//The 19th National Helicopter Conference. Harbin: Chinese Society of Aeronautics and Astronautics, 2003: 65-70(in Chinese).
    [7]
    孙旋, 童明波, 陈智, 等. 碳纤维复合材料接头力学性能试验与仿真分析[J]. 复合材料学报, 2016, 33(11):2517-2527.

    SUN X, TONG M B, CHEN Z, et al. Test and simulation analysis of mechanical properties for joint of carbon fiber composites[J]. Acta Materiae Compositae Sinica,2016,33(11):2517-2527(in Chinese).
    [8]
    石好男, 王继辉, 张桂明. 复合材料L型接头的损伤与破坏模式研究[J]. 玻璃钢/复合材料, 2019(3):16-20.

    SHI H N, WANG J H, ZHANG G M. The research on damage and failure modes of composite L-joint[J]. Fiber Reinforced Plastics/Composites,2019(3):16-20(in Chinese).
    [9]
    CHANG F K, SCOTT R A, SPRINGER G S. Strength of mechanically fastened composite joints[J]. Journal of Composite Materials,1982,16(6):470-494. doi: 10.1177/002199838201600603
    [10]
    WOLFF R V, LEMON G H. Reliability prediction for composite joints-bonded and bolted: AD-A026408[R]. [s. l.]: [s. n.], 1976.
    [11]
    KASSAPOGLOU C, TOWNSEND W A. Failure prediction of composite lugs under axial loads[J]. AIAA Journal,2003,41(11):2239-2243. doi: 10.2514/2.6816
    [12]
    WALLIN M, SAARELA O, LAW B, et al. RTM composite lugs for high load transfer applications[C]//Congress of the International Council of the Aeronautical Sciences. Hamburg: Helsinki University of Technology, 2006.
    [13]
    史坚忠, 黄维扬. 复合材料缠绕接头几种受力状态的解析分析[J]. 南京航空航天大学学报, 1999, 31(6):722-726.

    SHI J Z, HUANG W Y. Analysis of winding composite joints at several load conditions[J]. Journal of Nanjing University of Aeronautics <italic>&</italic> Astronautics,1999,31(6):722-726(in Chinese).
    [14]
    史坚忠, 黄维杨. 复合材料承力接头设计的相关理论与应用概述[J]. 洪都科技, 1999(1):1-7.

    SHI J Z, HUANG W Y. A survey of related theory and application of bearing-load joints of composite materials[J]. Hongdu Science and Technology,1999(1):1-7(in Chinese).
    [15]
    程家林. 层压复合材料连接接头设计及其在大飞机中的应用[J]. 航空学报, 2008, 29(3):640-644. doi: 10.3321/j.issn:1000-6893.2008.03.017

    CHENG J L. Design of composite laminated joint and its application in large aircrafts[J]. Acta Aeronautica et Astronautica Sinica,2008,29(3):640-644(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.017
    [16]
    张文荣. 复合材料耳片接头承载能力试验[J]. 洪都科技, 2001(1):38-42, 54.

    ZHANG W R. Test for load-bearing capacity of lug connector of composite material[J]. Hongdu Science and Technology,2001(1):38-42, 54(in Chinese).
    [17]
    王强, 王建华, 黎小宝, 等. 环绕型复合材料接头层间开裂问题分析和改进措施[J]. 教练机, 2013(2):62-65.

    WANG Q, WANG J H, LI X B, et al. Analysis and improvement on laminated cracking of circular composite joint[J]. Trainer,2013(2):62-65(in Chinese).
    [18]
    HAVAR T, WERCHNER C, MIDDENDORF J. Design and manufacturing of composite aerospace load introduction structures[C]//AIAA/ASME/ASCE/AHS /ASC Structures, Structural Dynamics and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2011.
    [19]
    HAVAR T, DRECHSLER K. Design and progressive failure analysis of 3D-reinforced composite force introduction loops[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2008.
    [20]
    雷良超, 周光明, 陆方舟, 等. 复合材料缠绕接头拉伸失效性能有限元分析[J]. 兵器装备工程学报, 2018, 39(4):174-178. doi: 10.11809/bqzbgcxb2018.04.037

    LEI L C, ZHOU G M, LU F Z, et al. Finite element analysis on tensile properties of composite winding joint[J]. Journal of Ordnance Equipment Engineering,2018,39(4):174-178(in Chinese). doi: 10.11809/bqzbgcxb2018.04.037
    [21]
    雷良超. 复合材料缠绕接头力学性能研究[D]. 南京: 南京航空航天大学, 2018.

    LEI L C. Research on mechanical properties of the winding composite lug[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2018(in Chinese).
    [22]
    王耀先. 复合材料力学与结构设计[M]. 上海: 华东理工大学出版社, 2012.

    WANG Y X. Mechanics and structural design of composite materials [M]. Shanghai: East China University of Science and Technology Press, 2012(in Chinese).
    [23]
    HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1981,48(4):846-852. doi: 10.1115/1.3157744
    [24]
    CAMANHO P P, DÁVILA C G. Mixed-mode decohesion elements for the simulation of delamination in composite materials: NASA/TM-2002-211737[R]. Washington: NASA, 2002.
    [25]
    陈丁丁, 朱萌, 胡其高, 等. 含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制[J]. 复合材料学报, 2020, 37(6):1312-1320.

    CHEN D D, ZHU M, HU Q G, et al. Tensile failure mechanism of carbon fiber reinforced polymer composites with ply splice[J]. Acta Materiae Compositae Sinica,2020,37(6):1312-1320(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (1140) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return