Volume 37 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
LIU Ping, WANG Xiangyu, HUANG Zhou. Dynamic behavior simulation of foam filled honeycomb using material point method[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2230-2239. doi: 10.13801/j.cnki.fhclxb.20191224.001
Citation: LIU Ping, WANG Xiangyu, HUANG Zhou. Dynamic behavior simulation of foam filled honeycomb using material point method[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2230-2239. doi: 10.13801/j.cnki.fhclxb.20191224.001

Dynamic behavior simulation of foam filled honeycomb using material point method

doi: 10.13801/j.cnki.fhclxb.20191224.001
  • Received Date: 2019-10-30
  • Accepted Date: 2019-12-14
  • Available Online: 2019-12-24
  • Publish Date: 2020-09-15
  • To investigate the dynamic behavior and energy absorption performance of foam filled honeycomb (FFH) under impact loading, a series of meso-structure models were established by material point method (MPM). The stress-strain curves of foam meso-structure models agree well with the theoretical model and experimental data. The deformation and damage morphologies of FFH models are consistent with those of experiments. The result shows that the filled foam and honeycomb consume energy through plastic deformation and buckling separately, and the filled-foam makes a remarkable enhancement effect on the energy absorption of the honeycomb. The influences of the filled-foam density and loading strain rate were investigated. As the filled-foam density increases, the dynamic behavior of FFH turns better, the total energy absorption and that of honeycomb component increase as well. Since the filled-foam intensifies the buckling strength of the honeycomb, the honeycomb could withstand more deformation. The stress-strain curves of FFH are sensitive to the loading strain rate, which has a certain impact on the energy absorption performance, and the total energy absorptions are confined to less than 15%. The total energy absorption and those of each component are determined by the FFH structure, and not irrelevant with the loading strain rate.

     

  • loading
  • [1]
    ZAREI H R, KRÖGER M. Crashworthiness optimization of empty and filled aluminum crash boxes[J]. International Journal of Crashworthiness,2007,12(3):255-264. doi: 10.1080/13588260701441159
    [2]
    卢子兴, 陈伟. 泡沫变形模式对泡沫填充圆管压溃行为的影响[J]. 复合材料学报, 2011, 28(5):168-173.

    LU Zixing, CHEN Wei. Effect of the foam deformation modes on the crushing behavior of foam-filled circular tube[J]. Acta Materiae Compositae Sinica,2011,28(5):168-173(in Chinese).
    [3]
    闫晓刚, 张勇, 林继铭, 等. 新颖圆形多胞复合填充结构的耐撞性[J]. 复合材料学报, 2018, 35(8):190-200.

    YAN Xiaogang, ZHANG Yong, LIN Jiming, et al. Crashworthiness for novel circular multi-cell composite filling structures[J]. Acta Materiae Compositae Sinica,2018,35(8):190-200(in Chinese).
    [4]
    高华, 熊超, 殷军辉, 等. 多层异质复合结构的动力学响应及抗侵彻性能[J]. 复合材料学报, 2019, 36(5):228-238.

    GAO Hua, XIONG Chao, YIN Junhui, et al. Dynamic response and anti-penetration performance of multi-layered heterogeneous composite structure[J]. Acta Materiae Compositae Sinica,2019,36(5):228-238(in Chinese).
    [5]
    YASHRUTI E K. Foam-filled honeycomb offers versatility[J]. Reinforced Plastics,1995,39(12):36-37. doi: 10.1016/S0034-3617(98)80121-5
    [6]
    SADOWSKI T, BĘC J. Effective properties for sandwich plates with aluminium foil honeycomb core and polymer foam filling: Static and dynamic response[J]. Computational Materials Science,2011,50(4):1269-1275. doi: 10.1016/j.commatsci.2010.04.014
    [7]
    MOZAFARI H, KHATAMI S, MOLATEFI H. Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train eXpress: Numerical study[J]. Materials <italic>&</italic> Design,2015,66:400-411.
    [8]
    甄建伟, 安振涛, 陈玉成, 等. 蜂窝增强泡沫塑料的静动态力学性能[J]. 复合材料学报, 2011, 28(3):223-228.

    ZHEN Jianwei, AN Zhentao, CHEN Yucheng, et al. Quasi-static and dynamic mechanical properties of honeycomb reinforced plastic foam[J]. Acta Materiae Compositae Sinica,2011,28(3):223-228(in Chinese).
    [9]
    张勇, 谢卫红, 陈力, 等. 填充聚氨酯泡沫蜂窝纸板缓冲性能试验[J]. 解放军理工大学学报(自然科学版), 2014, 15(2):139-145.

    ZHANG Yong, XIE Weihong, CHEN Li, et al. Experimental research on static and dynamic energy absorbing capacity of honeycomb paperboard filled with polyurethane[J]. Journal of PLA University of Science and Technology (Natural Science Edition),2014,15(2):139-145(in Chinese).
    [10]
    NIA A A, SADEGHI M Z. The effects of foam filling on compressive response of hexagonal cell aluminum honeycombs under axial loading-experimental study[J]. Materials <italic>&</italic> Design,2010,31(3):1216-1230.
    [11]
    NIKNEJAD A, LIAGHAT G H, NAEINI H M, et al. Theoretical and experimental studies of the instantaneous folding force of the polyurethane foam-filled square honeycombs[J]. Materials and Design,2011,32(1):69-75. doi: 10.1016/j.matdes.2010.06.033
    [12]
    NIA A A, SADEGHI M Z. An experimental investigation on the effect of strain rate on the behaviour of bare and foam-filled aluminium honeycombs[J]. Materials and Design,2013,52:748-756.
    [13]
    BURLAYENKO V N, SADOWSKI T. Analysis of structural performance of sandwich plates with foam-filled aluminum hexagonal honeycomb core[J]. Computational Materials Science,2009,45(3):658-662.
    [14]
    BURLAYENKO V N, SADOWSKI T. Application of homogenization FEM analysis to aluminum honeycomb core filled with polymer foams[J]. PAMM,2010,10(1):403-404.
    [15]
    BURLAYENKO V N, SADOWSKI T. Effective elastic properties of foam-filled honeycomb cores of sandwich panels[J]. Composite Structures,2010,92(12):2890-2900. doi: 10.1016/j.compstruct.2010.04.015
    [16]
    MAHMOUDABADI M Z, SADIGHI M. A study on the static and dynamic loading of the foam filled metal hexagonal honeycomb: Theoretical and experimental[J]. Materials Science <italic>&</italic> Engineering A,2011,530:333-343.
    [17]
    于渤, 韩宾, 倪长也, 等. 空心及PMI泡沫填充铝波纹夹芯梁冲击性能实验研究[J]. 西安交通大学学报, 2015, 49(1):86-91.

    YU Bo, HAN Bin, NI Changye, et al. Experimental investigation on impact response of aluminum corrugated sandwich beams with empty and PMI foam filling[J]. Journal of Xi’an Jiaotong University,2015,49(1):86-91(in Chinese).
    [18]
    HAN B, YU B, XU Y, et al. Foam filling radically enhances transverse shear response of corrugated sandwich plates[J]. Materials <italic>&</italic> Design,2015,77:132-141.
    [19]
    LIU P, LIU Y, ZHANG X, et al. Investigation on high-velocity impact of micron particles using material point method[J]. International Journal of Impact Engineering,2015,75:241-254. doi: 10.1016/j.ijimpeng.2014.09.001
    [20]
    LIU P, LIU Y, ZHANG X. Internal-structure-model based simulation research of shielding properties of honeycomb sandwich panel subjected to high-velocity impact[J]. International Journal of Impact Engineering,2015,77:120-133. doi: 10.1016/j.ijimpeng.2014.11.004
    [21]
    LIU Y, GONG W W, ZHANG X. Numerical investigation of influences of porous density and strain-rate effect on dynamical responses of aluminum foam[J]. Computational Materials Science,2014,91:223-230. doi: 10.1016/j.commatsci.2014.05.002
    [22]
    张雄, 刘岩, 廉艳平. 物质点法[M]. 北京: 清华大学出版社, 2015.

    ZHANG Xiong, LIU Yan, LIAN Yanping. Material point method[M]. Beijing: Tsinghua University Press, 2015(in Chinese).
    [23]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. Hague: [s. n.], 1983.
    [24]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics,1985,21(1):31-48. doi: 10.1016/0013-7944(85)90052-9
    [25]
    GIORGI M D, CAROFALO A, DATTOMA V, et al. Aluminium foams structural modelling[J]. Computers <italic>&</italic> Structures,2010,88(1-2):25-35.
    [26]
    YANG P F, MEGUID S A, ZHANG X. Accurate modelling of the crush behaviour of thin tubular columns using material point method[J]. Science China Physics Mechanics <italic>&</italic> Astronomy,2013,56(6):1209-1219.
    [27]
    中国国家标准化管理委员会. 金属材料室温压缩试验方法: GB/T 7314—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Metallic materials-compression testing at ambient temperature: GB/T 7314—2005[S], Beijing: China Standards Press, 2005(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views (856) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return