Volume 37 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
YE Xin, AN Luling, YUE Xuande, et al. Effect of gap-filling compensation on mechanical properties of carbon fiber/epoxy composite-aluminum assembly structure[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2183-2199. doi: 10.13801/j.cnki.fhclxb.20191207.002
Citation: YE Xin, AN Luling, YUE Xuande, et al. Effect of gap-filling compensation on mechanical properties of carbon fiber/epoxy composite-aluminum assembly structure[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2183-2199. doi: 10.13801/j.cnki.fhclxb.20191207.002

Effect of gap-filling compensation on mechanical properties of carbon fiber/epoxy composite-aluminum assembly structure

doi: 10.13801/j.cnki.fhclxb.20191207.002
  • Received Date: 2019-10-23
  • Accepted Date: 2019-12-02
  • Available Online: 2019-12-09
  • Publish Date: 2020-09-15
  • As main aviation materials, there are a lot of assembly relationships between carbon fiber/epoxy composites and aluminum in aircraft structures. However, due to limitation of the composite forming process, assembly gaps will be created between the mating surfaces in the case of manufacturing and assembly deviations. When the gap exceeds a certain size, gap-filling compensation is necessary. Based on the actual structure, the carbon fiber/epoxy composite-aluminum assembly model was abstracted, the assembly test bench was used to simulate the pre-tightening force of the bolt, and the strain gauge and 3D digital image correlation(3D-DIC) experiment were used to compare the strain on the surface under the condition of forced assembly and gap-filling compensation in older to analyze the deformation rule of the component. The interlaminar stress analysis was carried out by finite element method, and the effects of gap-filling compensation on the interlaminar stress and local damage of the carbon fiber/epoxy composite-aluminum assembly structure were studied by extracting the stress components and damage of the cohesive element. The results of experimental and simulation analysis show that with the assembly gap increasing, the strain values increase; Gap-filling compensation improves the strain state caused by the bending deformation, while the strain of the bolt head extrusion zone is also increased. In general, gap-filling compensation makes the strain distribution more uniform and reduces damage of the carbon fiber/epoxy composite, and the liquid shim effect is slightly better than the peelable shim.

     

  • loading
  • [1]
    李东升, 翟雨农, 李小强. 飞机复合材料结构少无应力装配方法研究与应用进展[J]. 航空制造技术, 2017(9):30-34.

    LI D S, ZHAI Y N, LI X Q. Research and application advances of stress-less assembly methods forcomposite airframe[J]. Aeronautical Manufacturing Technology,2017(9):30-34(in Chinese).
    [2]
    邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.

    XING L Y, BAO J W, LI S M, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
    [3]
    COLEMAN R M. The effects of design, manufacturing processes and operations management on the assembly of aircraft composite structure[D]. Massachusetts: Massachusetts Institute of Technology, 1991.
    [4]
    杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [5]
    赵稼祥. 碳纤维复合材料在民用航空上的应用[J]. 高科技纤维与应用, 2003, 28(3):1-4, 35.

    ZHAO J X. Application of carbon composite materials for civil aviation[J]. Hi-Tech Fiber <italic>&</italic> Application,2003,28(3):1-4, 35(in Chinese).
    [6]
    MARSH G. Airbus A350 XWB update[J]. Reiforced Plastics,2010,54(6):20-24. doi: 10.1016/S0034-3617(10)70212-5
    [7]
    Department of Defense. Composite materials handbook Volume 1: Polymer matrix composites guidelines for characterization of structural materials[M]. Washington: Department of Defense, 2002.
    [8]
    STEINBERG M A. Net shape technology in aerospace structures volume 4: Future composite manufacturing technology[M] Washington: National Research Council, 1986.
    [9]
    CAMPBELL F C. Manufacturing processes for advanced composites[M]. Amsterdam: Elsevier, 2004.
    [10]
    徐福泉, 高大伟. 复合材料结构装配过程中的制孔和连接[J]. 航空制造技术, 2010(17):72-74. doi: 10.3969/j.issn.1671-833X.2010.17.015

    XU F Q, GAO D W. Drilling and linking during composites structure assembly process[J]. Aeronautical Manufacturing Technology,2010(17):72-74(in Chinese). doi: 10.3969/j.issn.1671-833X.2010.17.015
    [11]
    张桂书. 飞机复合材料构件装配间隙补偿研究[D]. 南京: 南京航空航天大学, 2015.

    ZHANG G S. Research on assembly gap compensation for aircraft composite components[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
    [12]
    云一珅. 填隙补偿参数对复材螺栓连接结构的力学性能的影响研究[D]. 南京: 南京航空航天大学, 2017.

    YUN Y S. Research on the effect of gap-filling parameters on mechanical behavior of the bolt connected composite structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese).
    [13]
    岳烜德, 安鲁陵, 云一珅, 等. 液体垫片对复合材料装配结构应力和应变的影响[J]. 复合材料学报, 2018, 35(10):2665-2677.

    YUE X D, AN L L, YUN Y S, et al. Influences of the liquid shim on the mechanical properties of single-lap composite bolted joint[J]. Acta Materiae Compositae Sinica,2018,35(10):2665-2677(in Chinese).
    [14]
    ATTAHU C Y, AN L L. Influence of assembly gap and shims on the strain and stress of bolted composite-aluminum structures[J]. ARPN Journal of Engineering and Applied Sciences,2017,12(5):1593-1617.
    [15]
    DHÔTE J X, COMER A J, STANLEY W F, et al. Investigation into compressive properties of liquid shim for aerospace bolted joints[J]. Composite Structures,2014,109:224-230.
    [16]
    HÜHNE C, ZERBST A K, KUHLMANN G, et al. Progressive damage analysis of composite bolted joints with liquid shim layers using constant and continuous degradation models[J]. Composite Structures,2010,92(2):189-200. doi: 10.1016/j.compstruct.2009.05.011
    [17]
    COMER A J, DHÔTE J X, STANLEY W F, et al. Thermo-mechanical fatigue analysis of liquid shim in mechanically fastened hybrid joints for aerospace applications[J]. Composite Structures,2012,94(7):2181-2187. doi: 10.1016/j.compstruct.2012.01.008
    [18]
    LIU L. The influence of the substrate’s stiffness on the liquid shim effect in composite-to-titanium hybrid bolted joints[J]. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering,2014,228(3):470-479.
    [19]
    PAUL D, KELLY L, VENKAYYA V. Evolution of U. S. military aircraft structures technology[J]. Journal of Aircraft,2002,39(1):18-29. doi: 10.2514/2.2920
    [20]
    GOERING J, BOHLMANN R E, WANEHAL S, et al. Assembly Induced delamination in composite structures[C]//Proceedings of ninth DoD/NASA/FAA Conference on Fibrous Composites in Structural Design. Lake Tahoe: NASA, 1992.
    [21]
    CAMPONESCHI E T, BOHLMANN R E, FOGARTY J H. Composite to metal joints for the ARPA man-rated demonstration article[J]. Journal of Thermoplastic Composite Materials,1995,8(1):56-79.
    [22]
    肖睿恒, 云一珅, 胡坚皓, 等. 一种用于复合材料结构装配填隙补偿分析的方法和装置: 中国, CN108507764A[P]. 2018-09-07.

    XIAO R H, YUN Y S, HU J H, et al. A method and device for gap-filling compensation analysis of composite structure assembly: China, CN108507764A[P]. 2018-09-07(in Chinese).
    [23]
    THOPPUL S D, FINEGAN J, GIBSON R F. Mechanics of mechanically fastened joints in polymer-matrix composite structures: A review[J]. Composites Science <italic>&</italic> Technology,2009,69(3-4):301-329.
    [24]
    BRESSON G, JUMEL J, SHANAHAN M E R, et al. Statistical aspects of the mechanical behaviour a paste adhesive[J]. International Journal of Adhesion <italic>&</italic> Adhesives,2013,40(1):70-79.
    [25]
    谢鸣九. 复合材料连接[M]. 上海: 上海交通大学出版社, 2011.

    XIE M J. Joints for composites materials[M]. Shanghai: Shanghai Jiaotong University Press, 2011(in Chinese).
    [26]
    ASTM International. Standard test method for bearing response of polymer matrix composite laminates: ASTM D5961M—17[S]. West Conshohocken: ASTM International, 2017.
    [27]
    部标准编制组. 部标准《高锁螺栓、螺母》介绍[J]. 航空标准化与质量, 1981(3):1-4.

    Department Standard Establishment Group. The standard of high lock bolt and nut[J]. Aeronautic Standardization <italic>&</italic> Quality,1981(3):1-4(in Chinese).
    [28]
    KAPIDŽIĆ Z, NILSSON L, ANSELL H. Finite element modeling of mechanically fastened composite-aluminum joints in aircraft structures[J]. Composite Structures,2014,109:198-210.
    [29]
    ZHAI Y N, LI X Q, WANG L, et al. Three-dimensional layer-by-layer stress analysis of single-lap, countersunk composite joints with varying joining interface conditions[J]. Composite Structures,2018,202:1021-1031.
    [30]
    MCCARTHY M A, MCCARTHY C T, LAWLOR V P, et al. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints Part I: Model development and validation[J]. Composite Structures,2005,71(2):159-175.
    [31]
    ATAS A, SOUTI C. Strength prediction of bolted joints in CFRP composite laminates using cohesive zone elements[J]. Composites Part B: Engineering,2014,58:25-34. doi: 10.1016/j.compositesb.2013.10.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(5)

    Article Metrics

    Article views (1000) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return