LU Dongmei, YANG Ruixia, WANG Qingzhou. Fabrication and wear resistances of doped nano-SnO2-Al2O3/Cu novel electrical contact composites[J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2815-2823. doi: 10.13801/j.cnki.fhclxb.20160129.003
Citation: LU Dongmei, YANG Ruixia, WANG Qingzhou. Fabrication and wear resistances of doped nano-SnO2-Al2O3/Cu novel electrical contact composites[J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2815-2823. doi: 10.13801/j.cnki.fhclxb.20160129.003

Fabrication and wear resistances of doped nano-SnO2-Al2O3/Cu novel electrical contact composites

doi: 10.13801/j.cnki.fhclxb.20160129.003
  • Received Date: 2015-11-20
  • Rev Recd Date: 2016-01-09
  • Publish Date: 2016-12-15
  • In order to meet the urgent needs of low-voltage electrical equipment for high quality electrical contact materials, and to protect the scarce resources and reduce the cost of electrical contact at the same time, doped nano-SnO2-Al2O3/Cu novel electrical contact composites were fabricated by using powder metallurgy technique. The electrical conductivity, hardness and wear resistances of them were also investigated. The results show that both of re-sintering and cold deformation processes can improve the sintering quality, density, electrical conductivity as well as hardness of the composites significantly. With the increasing for total content of nano-Al2O3 and doped nano-SnO2 particles, hardness and wear resistances of the doped nano-SnO2-Al2O3/Cu electrical contact composites show the same change rule, which increases firstly and then decreases. When the total content of nano-Al2O3 and doped nano-SnO2 particles is 0.80wt%, both of the hardness and wear resistances of the composites reach the optimum. While when the total content of nano-Al2O3 and doped nano-SnO2 particles remains unchanged at 0.80wt%, with the content of nano-Al2O3 particles increasing, the hardness and wear resistances of the doped nano-SnO2-Al2O3/Cu electrical contact composites enhance. When the content of doped nano-SnO2 particles is 0, the wear resistance of the composite reaches the optimum. Therefore, compared with doped nano-SnO2 particles, the nano-Al2O3 particles have a more significant improving effect on the wear resistance of the doped nano-SnO2-Al2O3/Cu electrical contact composites.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (665) PDF downloads(265) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return