YUAN Zhenyi, WANG Yongjun, ZHANG Yue, et al. Multi-field coupled numerical simulation for curing process of composites with time-dependent properties of materials[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 167-175. doi: 10.13801/j.cnki.fhclxb.20140328.001
Citation: YUAN Zhenyi, WANG Yongjun, ZHANG Yue, et al. Multi-field coupled numerical simulation for curing process of composites with time-dependent properties of materials[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 167-175. doi: 10.13801/j.cnki.fhclxb.20140328.001

Multi-field coupled numerical simulation for curing process of composites with time-dependent properties of materials

doi: 10.13801/j.cnki.fhclxb.20140328.001
  • Received Date: 2014-01-02
  • Rev Recd Date: 2014-03-10
  • Publish Date: 2015-02-15
  • According to the interrelationship of the complex physical and chemical processes during the curing process of thermoset resin composites, a multi-field coupled two-dimensional model based on the time-dependent properties of materials during the curing process of composites was established. The model incorporated three typical existing sub models for curing process of composites: thermo-chemical model, resin viscosity model and resin flow model. On the basis, the time-dependent properties of material performances during the curing process were introduced into multi-field coupled calculation model. According to the comparison with experiment data in reference, the model established was proved to possess relative superior reliability. The curing process of AS4/3501-6 composite laminates were numerical simulated. The effects of the variation of fiber volume fraction and time-dependent properties of material performances on the temperature, the degree of cure, the pressure of resin and other parameters during curing process was studied attentively. The results show that when taking the changes of fiber volume fraction and time-dependent properties of material parameters into consideration, the peak value of temperature at the center of composite laminate decreases significantly, and the change of resin pressure verses time lags.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (877) PDF downloads(615) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return