留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

季铵盐接枝聚膦腈微球的制备及抗菌活性

柯丽颖 邝伟聪 熊永强 邓穗平 卿鹏 谭绍早

柯丽颖, 邝伟聪, 熊永强, 等. 季铵盐接枝聚膦腈微球的制备及抗菌活性[J]. 复合材料学报, 2021, 38(10): 3226-3235. doi: 10.13801/j.cnki.fhclxb.20210203.002
引用本文: 柯丽颖, 邝伟聪, 熊永强, 等. 季铵盐接枝聚膦腈微球的制备及抗菌活性[J]. 复合材料学报, 2021, 38(10): 3226-3235. doi: 10.13801/j.cnki.fhclxb.20210203.002
KE Liying, KUANG Weicong, XIONG Yongqiang, et al. Antibacterial activity and preparation of quaternary ammonium grafted polyphosphazene microspheres[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3226-3235. doi: 10.13801/j.cnki.fhclxb.20210203.002
Citation: KE Liying, KUANG Weicong, XIONG Yongqiang, et al. Antibacterial activity and preparation of quaternary ammonium grafted polyphosphazene microspheres[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3226-3235. doi: 10.13801/j.cnki.fhclxb.20210203.002

季铵盐接枝聚膦腈微球的制备及抗菌活性

doi: 10.13801/j.cnki.fhclxb.20210203.002
基金项目: 国家自然科学基金 (51872124;21676116);广东省自然科学基金区域联合基金重点项目(2019B1515120056);佛山市创新团队项目(FS0AA-KJ919-4402-0086)
详细信息
    通讯作者:

    卿鹏,博士,副主任医师,研究方向为医学针灸 E-mail: qingpeng5602@163.com

    谭绍早,博士,教授,博士生导师,研究方向为抗菌材料 E-mail: tsztan@jnu.edu.cn

  • 中图分类号: TB33;O635.2

Antibacterial activity and preparation of quaternary ammonium grafted polyphosphazene microspheres

  • 摘要: 细菌感染引起的疾病问题在世界范围内引起广泛的关注。抗生素虽然能有效治疗细菌感染,但是不合理的使用及滥用会导致细菌产生耐药性。因此,解决细菌耐药性问题并研发出安全高效的非抗生素抗菌剂显得尤为迫切。通过在生物可降解型环交联型聚(环三膦腈-共-聚乙烯亚胺)微球(PHP)表面上接枝环氧丙基十二烷基二甲基氯化铵(DDEAC),成功制备了环交联型聚(环三膦腈-共-聚乙烯亚胺)接枝季铵盐微球(PHPD)。采用FTIR、XPS、TG、TEM和FESEM对微球的结构与形貌进行了表征分析,并研究了其抗菌活性和细胞毒性。实验结果表明,改性抗菌微球PHPD(50 μg/mL)对大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)的抗菌率均达97.3%。复合材料克服了单独使用季铵盐DDEAC材料的高毒性缺陷,并且在实现高效抗菌的同时也具有很好的细胞相容性。因此,本研究对于开发安全高效的纳米抗菌剂具有一定的指导意义。

     

  • 图  1  环交联型聚(环三膦腈-共-聚乙烯亚胺)微球(PHP)及交联型聚(环三膦腈-共-聚乙烯亚胺)接枝季铵盐微球(PHPD)的制备过程

    Figure  1.  Preparation process of biodegradable cyclic cross-linked poly(cyclotriphosphazene-co-polyethyleneimine) microspheres (PHP) and ring-crosslinked poly (cyclotriphosphazene-co-polyethyleneimine) grafted quaternary ammonium salt microspheres (PHPD)

    图  2  环氧丙基十二烷基二甲基氯化铵(DDEAC)、PHP及PHPD的FTIR图谱

    Figure  2.  FTIR spectra of dodecyl dimethyl Ammonium chloride (DDEAC), PHP and PHPD

    图  3  PHP (a) 和PHPD (c) 的SEM图像、PHP (b) 和PHPD (d) 的TEM图像

    Figure  3.  SEM images of PHP (a) and PHPD (c), TEM images of PHP (b) and PHPD (d)

    图  4  PHP的XPS全谱 (a) 、N 1s谱( b) 和C 1s谱 (c); PHPD的XPS全谱 (d) 、N 1s谱 (e) 和C 1s谱 (f)

    Figure  4.  XPS spectra of PHP of a survey scan (a), N 1s (b) and C 1s (c); PHPD of a survey scan (d), N 1s (e) and C 1s (f)

    图  5  PHP、PHPD和DDEAC的TG曲线 (a) 和PHP的DSC曲线 (b)

    Figure  5.  TG curves (a) of PHP, PHPD, DDEAC and DSC curve (b) of PHP

    图  6  空白对照 (a)、PHP处理 (b)、DDEAC处理 (c) 和PHPD处理 (d) 大肠杆菌的SEM图像;空白对照 (e)、PHP处理 (f)、DDEAC处理 (g) 和PHPD处理 (h)大肠杆菌的TEM图像

    Figure  6.  SEM images of E.coli cells treated by blank (a), PHP (b), DDEAC (c) and PHPD (d); TEM images of E. coli cells treated by blank (e), PHP (f), DDEAC (g) and PHPD (h)

    图  8  PHP、PHPD和DDEAC对NIH-3T3细胞的毒性曲线

    Figure  8.  Cytotoxicity of PHP、PHPD and DDEAC on NIH-3T3 cells

    图  7  空白对照 (a)、PHP处理 (b)、DDEAC处理 (c) 和PHPD处理 (d) 金黄色葡萄球菌的SEM图像;空白对照 (e)、PHP处理 (f)、DDEAC处理 (g) 和PHPD处理 (h)金黄色葡萄球菌的TEM图像

    Figure  7.  SEM images of S.aureus cells treated by blank (a), PHP (b), DDEAC (c) and PHPD (d); TEM images of S. aureus cells treated by blank (e), PHP (f), DDEAC (g) and PHPD (h)

    图  9  在50 μg/mL样品浓度下相互作用24 h后NIH-3T3细胞的形态变化

    Figure  9.  Evolution of morphologies of NIH-3T3 cells after the interaction for 24 h under the concentration of 50 μg/mL

    表  1  PHP与DDEAC不同投料质量比的碳氮含量

    Table  1.   Carbon and nitrogen contents of different feed mass ratios of PHP and DDEAC

    PHPDN/wt%C/wt%C/N
    m(PHP)∶m(DDEAC)=1∶0 24.59 34.56 1.40
    m(PHP)∶m(DDEAC)=5∶1 24.25 38.71 1.59
    m(PHP)∶m(DDEAC)=3∶1 24.86 40.19 1.61
    m(PHP)∶m(DDEAC)=1∶1 22.19 39.22 1.76
    m(PHP)∶m(DDEAC)=1∶3 23.13 38.22 1.65
    m(PHP)∶m(DDEAC)=1∶5 23.76 35.76 1.50
    下载: 导出CSV

    表  2  PHP、DDEAC和PHPD的抗菌活性

    Table  2.   Antibacterial activity of PHP, DDEAC and PHPD

    StrainSample5 μg/mL10 μg/mL25 μg/mL50 μg/mL
    E.coli Control 0 0 0 0
    PHP (12±4.2)% (35.6±3.6)% (73.8±0.8)% (93.4±0.2)%
    DDEAC (50.6±7.5)% (99.0±0.1)% 100% 100%
    PHPD (84.9±2.9)% (90.9±0.8)% (93.2±1.2)% (97.3±1.1)%
    S.aureus Control 0 0 0 0
    PHP (28.9±3.4)% (40.2±2.8)% (81.9±0.7)% (94.1±1.9)%
    DDEAC (62.1±0.8)% (99.8±0.3)% 100% 100%
    PHPD (86.8±1.3)% (88.1±1.9)% (93.8±0.9)% (97.3±0.3)%
    下载: 导出CSV

    表  3  大肠杆菌细胞外液的K+、Ca2+和Mg2+的浓度

    Table  3.   Concentration of K+, Ca2+ and Mg2+ in the treated cell extracellular fluid

    SampleTime/hK+/(mg·L−1)Ca2+/(mg·L−1)Mg2+/(mg·L−1)
    Control 0 0.0206 0.0644 0.0050
    2 0.0285 0.0757 0.0039
    4 0.0349 0.1123 0.0065
    6 0.0312 0.0989 0.0088
    PHPD 0 0.0336 0.0887 0.0076
    2 0.0362 0.1009 0.0106
    4 0.0512 0.1258 0.0102
    6 0.0653 0.1234 0.0138
    下载: 导出CSV
  • [1] LI D, GAO X, HUANG X, et al. Preparation of organic-inorganic chitosan@ silver/sepiolite composites with high synergistic antibacterial activity and stability[J]. Carbohydrate Polymers,2020,249:116858. doi: 10.1016/j.carbpol.2020.116858
    [2] TRAN N H, CHEN H, REINHARD M, et al. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes[J]. Water Research,2016,104:461-472. doi: 10.1016/j.watres.2016.08.040
    [3] ORGANIZATION W H. Antimicrobial resistance: Global report on surveillance[J]. Australasian Medical Journal, 2014, 7(4): 238-239.
    [4] CHEN S, WANG H, KATZIANER D S, et al. Lysr family activator-regulated major facilitator superfamily transporters are involved in vibrio cholerae antimicrobial compound resistance and intestinal colonisation[J]. International Journal of Antimicrobial Agents,2013,41(2):188-192. doi: 10.1016/j.ijantimicag.2012.10.008
    [5] IVANOVA K, FERNANDES M M, FRANCESKO A, et al. Quorum-quenching and matrix-degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters[J]. ACS Applied Materials & Interfaces,2015,7(49):27066-27077.
    [6] LORENZETTI M, DOGSA I, STOSICKI T A, et al. The influence of surface modification on bacterial adhesion to titanium-based substrates[J]. ACS Applied Materials & Interfaces,2015,7(3):1644-1651.
    [7] IVANOVA A, IVANOVA K, HOYO J, et al. Layer-by-layer decorated nanoparticles with tunable antibacterial and antibiofilm properties against both gram-positive and gram-negative bacteria[J]. ACS Applied Materials & Interfaces,2018,10(4):3314-3323.
    [8] WEI T, ZHAN W, YU Q, et al. Smart biointerface with photoswitched functions between bactericidal activity and bacteria-releasing ability[J]. ACS Applied Materials & Interfaces,2017,9(31):25767-25774.
    [9] HAN X, LENG C, SHAN Q, et al. Absolute orientations of water molecules at zwitterionic polymer interfaces and interfacial dynamics after salt exposure[J]. Langmuir,2018,35(5):1327-1334.
    [10] LENG C, SUN S, ZHANG K, et al. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ[J]. Acta Biomaterialia,2016,40:6-15. doi: 10.1016/j.actbio.2016.02.030
    [11] MI L, JIANG S Y. Integrated antimicrobial and nonfouling zwitterionic polymers[J]. Angewandte Chemie-International Edition,2014,53(7):1746-1754. doi: 10.1002/anie.201304060
    [12] LI Y, LIN R, WANG L, et al. Peg-b-age polymer coated magnetic nanoparticle probes with facile functionalization and anti-fouling properties for reducing non-specific uptake and improving biomarker targeting[J]. Journal of Materials Chemistry B,2015,3(17):3591-3603. doi: 10.1039/C4TB01828A
    [13] KANG C K, KIM S S, KIM S, et al. Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts[J]. Carbohydrate Polymers,2016,151:1012-1018. doi: 10.1016/j.carbpol.2016.06.043
    [14] YE X L, FENG J, ZHANG J X, et al. Controlled release and long-term antibacterial activity of reduced graphene oxide/quaternary ammonium salt nanocomposites prepared by non-covalent modification[J]. Colloids and Surfaces B-Biointerfaces,2017,149:322-329. doi: 10.1016/j.colsurfb.2016.10.016
    [15] YU Q, ISTA L K, LOPEZ G P. Nanopatterned antimicrobial enzymatic surfaces combining biocidal and fouling release properties[J]. Nanoscale,2014,6(9):4750-4757. doi: 10.1039/C3NR06497B
    [16] JIAO Y, NIU L N, MA S, et al. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance[J]. Progress in Polymer Science,2017,71:53-90. doi: 10.1016/j.progpolymsci.2017.03.001
    [17] SALAJKOVA S, SRAMEK M, MALINAK D, et al. Highly hydrophilic cationic gold nanorods stabilized by novel quaternary ammonium surfactant with negligible cytotoxicity[J]. Journal of Biophotonics,2019,12(12):e201900024.
    [18] DING X, DUAN S, DING X, et al. Versatile antibacterial materials: An emerging arsenal for combatting bacterial pathogens[J]. Advanced Functional Materials,2018,28(40):1802140. doi: 10.1002/adfm.201802140
    [19] XU H B, YAN C, CHEN X, et al. Cyclomatrix-type polyphosphazene optical film coating: Preparation, characterization and properties[J]. Progress in Organic Coatings,2020,149:105933.
    [20] XIE X Q, WANG Y F, XIONG Z, et al. Highly efficient removal of uranium(VI) from aqueous solution using poly(cyclotriphosphazene-co-polyethyleneimine) microspheres[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326(3): 1867-1877.
    [21] WEI X, ZHENG D, ZHAO M, et al. Cross-linked polyphosphazene hollow nanosphere-derived n/p-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction[J]. Angewandte Chemie-International Edition,2020,59(34):14639-14646. doi: 10.1002/anie.202006175
    [22] ZHAO Z P, ZHENG W, CHEN G G, et al. Polyphosphazene nanotube and modified waterborne polyurethane prepared by in situ polymerization[J]. Iranian Polymer Journal,2020,29(6):493-500. doi: 10.1007/s13726-020-00813-9
    [23] CHEN K, WAN C, WEI W, et al. Convenient one-pot approach for the preparation of novel atomically thin two-dimensional polymeric nanosheets, and its evolution in aqueous solution[J]. Materials Letters,2015,139:93-97. doi: 10.1016/j.matlet.2014.10.050
    [24] BHUYAR P, RAHIM M H, SUNDARARAJU S, et al. Antioxidant and antibacterial activity of red seaweed; kappaphycus alvarezii against pathogenic bacteria[J]. Global Journal of Environmental Science and Management-Gjesm,2020,6(1):47-58.
    [25] LIU Y, YANG X, LI Y, et al. Synthesis and characterization of the epoxy-functionalized quaternary ammonium chloride[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,498:248-257.
    [26] ASRI L A T W, CRIAMARU M, ROEST S, et al. A shape-adaptive, antibacterial-coating of immobilized quaternary-Ammonium compounds tethered on hyperbranched polyurea and its mechanism of action[J]. Advanced Functional Materials,2014,24(3):346-355. doi: 10.1002/adfm.201301686
    [27] WANG Y, SHAO Y, MATSON D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. Acs Nano,2010,4(4):1790-1798. doi: 10.1021/nn100315s
    [28] YEW P Y M, CHEE P L, CALLY O, et al. Quarternized short polyethylenimine shows good activity against drug-resistant bacteria[J]. Macromolecular Materials and Engineering,2017,302(9):1700186. doi: 10.1002/mame.201700186
    [29] VALENCIA L, KUMAR S, JALVO B, et al. Fully bio-based zwitterionic membranes with superior antifouling and antibacterial properties prepared via surface-initiated free-radical polymerization of poly (cysteine methacrylate)[J]. Journal of Materials Chemistry A,2018,6(34):16361-16370. doi: 10.1039/C8TA06095A
    [30] LI Z, WANG S, YANG X, et al. Antimicrobial and antifouling coating constructed using rosin acid-based quaternary ammonium salt and n-vinylpyrrolidone via raft polymerization[J]. Applied Surface Science,2020,530:147193. doi: 10.1016/j.apsusc.2020.147193
    [31] SONG Z, WU Y, WANG H, et al. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ros-mediated pathways[J]. Materials Science and Engineering: C,2019,99:255-263. doi: 10.1016/j.msec.2018.12.053
    [32] CHEN S, QUAN Y, YU Y L, et al. Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application[J]. ACS Biomaterials Science & Engineering,2017,3(3):313-321.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  922
  • HTML全文浏览量:  517
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 录用日期:  2021-01-27
  • 网络出版日期:  2021-02-03
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回