留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

g-C3N4-Ag/SiO2复合材料光催化降解甲醛的应用

刘权锋 彭炜东 钟承韡 江吟莹 余江

刘权锋, 彭炜东, 钟承韡, 等. g-C3N4-Ag/SiO2复合材料光催化降解甲醛的应用[J]. 复合材料学报, 2022, 39(2): 628-636. doi: 10.13801/j.cnki.fhclxb.20210426.003
引用本文: 刘权锋, 彭炜东, 钟承韡, 等. g-C3N4-Ag/SiO2复合材料光催化降解甲醛的应用[J]. 复合材料学报, 2022, 39(2): 628-636. doi: 10.13801/j.cnki.fhclxb.20210426.003
LIU Quanfeng, PENG Weidong, ZHONG Chengwei, et al. Application of photocatalytic degradation of formaldehyde by g-C3N4-Ag/SiO2 heterostructure composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 628-636. doi: 10.13801/j.cnki.fhclxb.20210426.003
Citation: LIU Quanfeng, PENG Weidong, ZHONG Chengwei, et al. Application of photocatalytic degradation of formaldehyde by g-C3N4-Ag/SiO2 heterostructure composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 628-636. doi: 10.13801/j.cnki.fhclxb.20210426.003

g-C3N4-Ag/SiO2复合材料光催化降解甲醛的应用

doi: 10.13801/j.cnki.fhclxb.20210426.003
基金项目: 国家重点研发计划项目(2018YFC1802605);四川省科技重点攻关项目(2017GZ0383;2017SZ0181)
详细信息
    通讯作者:

    余江,博士,教授,研究方向为环境功能材料研究 E-mail:yuj@scu.edu.cn

  • 中图分类号: TB331

Application of photocatalytic degradation of formaldehyde by g-C3N4-Ag/SiO2 heterostructure composites

  • 摘要: 将Ag、薄层石墨相氮化碳(g-C3N4)和硅铝胶球(SiO2)通过液相超声剥离-光化学沉积法-浸渍法合成复合光催化材料。设计甲醛降解密闭实验舱,探究g-C3N4、Ag-g-C3N4和g-C3N4-Ag/SiO2材料的光催化特性及其对甲醛的降解效果。结果表明,在可见光源条件下,对于g-C3N4-Ag/SiO2材料,降解甲醛的效率最高可达到65.6%。40%的相对湿度可有效提升降解效果。负载30 mg 4%Ag/g-C3N4的硅铝胶球循环使用16次时,甲醛降解效率仅下降9.71%。结合材料表征结果表明,通过超声剥离和Ag的引入,提升了材料可见光的吸收强度和吸收范围,并且有效促进了光生电子和空穴的分离,有效提升甲醛分子的降解效率。研究结果表明g-C3N4-Ag/SiO2材料具有优异的稳定性和良好的光催化性能,为实际有机污染物治理的应用提供了较好的科学基础。

     

  • 图  1  甲醛降解实验舱

    Figure  1.  Formaldehyde degradation chamber

    1—Light source; 2, 7—Extraction sampling port; 3—Temperature and humidity meter; 4—Photocatalyst to be measured; 5—Formaldehyde volatile device; 6-Fan

    图  2  块状石墨相氮化碳(g-C3N4)、g-C3N4-F、4%Ag-g-C3N4-F样品的XRD图谱

    Figure  2.  XRD patterns of bulk graphite phase carbon nitride (g-C3N4-B), g-C3N4-F and 4%Ag-g-C3N4-F

    图  3  g-C3N4-B (a)、g-C3N4-F (b)、4%Ag-g-C3N4-F ((c)、(d)) 材料的SEM图像及4%Ag/g-C3N4-F ((e)、(f))的TEM图像

    Figure  3.  SEM images of g-C3N4-B (a), g-C3N4-F (b), 4%Ag-g-C3N4-F ((c), (d)) and TEM images of 4%Ag-g-C3N4-F ((e), (f))

    图  4  SiO2 (a)和g-C3N4-Ag/SiO2-30 (b) 的SEM图像

    Figure  4.  SEM images of SiO2 (a) and g-C3N4-Ag/SiO2-30 (b)

    图  5  g-C3N4-B、g-C3N4-F、4%Ag-g-C3N4-F紫外可见吸收光谱 (a) 及对应的Tauc曲线 (b)

    Figure  5.  UV-vis DRS (a) and corresponding Tauc’s plot (b) of g-C3N4-B, g-C3N4-F and 4%Ag-g-C3N4-F

    图  6  g-C3N4-B、g-C3N4-F、4%Ag-g-C3N4-F的荧光图谱

    Figure  6.  Photoluminescence spectra of g-C3N4-B,g-C3N4-F and 4%Ag-g-C3N4-F

    图  7  g-C3N4-B、g-C3N4-F、4%Ag-g-C3N4-F的瞬态光电流响应曲线 (a) 和电化学阻抗曲线 (b)

    Figure  7.  Transient photocurrent response curves (a) and EIS curves (b) of g-C3N4-B, g-C3N4-F and 4%Ag-g-C3N4-F

    图  8  Ag的质量比对甲醛降解的影响

    Figure  8.  Effect of Ag mass ratio on formaldehyde degradation rate

    图  9  不同g-C3N4-Ag/SiO2样品降解甲醛的效果

    Figure  9.  Degradation efficiency of g-C3N4-Ag/SiO2 samples to formaldehyde

    图  10  相对湿度对g-C3N4-Ag/SiO2-30降解甲醛效果的影响

    Figure  10.  Effect of relative humidity on formaldehyde degradation rate by g-C3N4-Ag/SiO2-30

    图  11  g-C3N4-Ag/SiO2-30降解甲醛的循环稳定性实验

    Figure  11.  Cyclic stability experiment of g-C3N4-Ag/SiO2-30 for degradation of formaldehyde

    图  12  g-C3N4-Ag/SiO2光催化降解机制

    Figure  12.  g-C3N4-Ag/SiO2 photocatalytic degradation mechanism

    表  1  Ag-薄层石墨相氮化碳(g-C3N4-F)复合材料的命名

    Table  1.   Naming of Ag-thin layer graphite phase carbon nitride (g-C3N4-F) composites

    Sampleg-C3N4-F/mgConcentration of AgNO3/(mg·mL−1)AgNO3/mLNa2S/mL
    0500052
    1%Ag-g-C3N4-F500152
    2%Ag-g-C3N4-F500252
    4%Ag-g-C3N4-F500452
    8%Ag-g-C3N4-F500852
    12%Ag-g-C3N4-F5001252
    16%Ag-g-C3N4-F5001652
    下载: 导出CSV

    表  2  石墨相氮化碳(g-C3N4)-Ag/SiO2复合材料的命名

    Table  2.   Naming of graphite phase carbon nitride (g-C3N4)-Ag/SiO2 composites

    SampleAg-g-C3N4-F/mgSiO2/gEthyl alcohol/mL
    g-C3N4-Ag/SiO2-101030100
    g-C3N4-Ag/SiO2-202030100
    g-C3N4-Ag/SiO2-303030100
    g-C3N4-Ag/SiO2-404030100
    g-C3N4-Ag/SiO2-505030100
    下载: 导出CSV
  • [1] ABU J B, MOURAD A H, HITTINI W, et al. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview[J]. Construction and Building Materials,2019,214:709-735.
    [2] HUANG S, WEI W, WESCHLER L B, et al. Indoor formaldehyde concentrations in urban China: Preliminary study of some important influencing factors[J]. Science of the Total Environment,2017,590:394-405.
    [3] WI S, PARK J H, KIM Y U, et al. Evaluation of environmental impact on the formaldehyde emission and flame-retardant performance of thermal insulation materials[J]. Journal of Hazardous Materials,2020,402:123463.
    [4] XIAN Q X, YING Y Y, YI T N, et al. Development of a cornstarch adhesive for laminated veneer lumber bonding for use in engineered wood flooring[J]. International Journal of Adhesion and Adhesives,2019,98:102534.
    [5] 尚丽新, 朴丰源. 环境有害因素的生殖和发育毒性[M]. 郑州: 河南科学技术出版社, 2017: 1-312.

    SHANG L X, PU F Y, ed. Reproductive and developmental toxicity of environmental harmful factors[M]. Zhengzhou: Henan Science and Technology Press, 2017: 1-312(in Chinese).
    [6] IARC. IARC monographs on the evaluation of carcinogenic risks to humans[R]. Switzerland:World Health Organization, 2006, 95: 27-50.
    [7] CHAE J N, MI J, DANIEL C W, et al. High-performance materials for effective sorptive removal of formaldehyde in air[J]. Journal of Hazardous Materials,2018,27(2):442-470.
    [8] KUAN L P, DAI L C, GUAN T P, et al. Removal of phenol from gas streams via combined plasma catalysis[J]. Journal of Industrial and Engineering Chemistry,2017,52:108-120. doi: 10.1016/j.jiec.2017.03.031
    [9] PATRICIO A, MORENO C, FELIPE S, et al. Computational tomography and CFD simulation of a biofilter treating a toluene, formaldehyde and benzo[α]pyrene vapor mixture[J]. Chemosphere,2020,240:124924. doi: 10.1016/j.chemosphere.2019.124924
    [10] ISMAEL M, WU Y. A mini-review on the synthesis and structural modification of g-C3N4 -based materials, and their applications in solar energy conversion and environmental remediation[J]. Sustainable Energy & Fuels,2019,3(12):8946-8968.
    [11] LI Y, WU S, HUANG L, et al. Synthesis of carbon-doped g-C3N4 composites with enhanced visible-light photocatalytic activity[J]. Materials Letters,2014,137:281-284. doi: 10.1016/j.matlet.2014.08.142
    [12] WANG X, MAEDA K, CHEN X, et al. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J]. Journal of the American Chemical Society,2009,131(5):1680-1681. doi: 10.1021/ja809307s
    [13] ZHOU T, XU Y G, XU H. In situ oxidation synthesis of visible-lightdriven plasmonic photocatalyst Ag/AgCl/g-C3N4 and its activity[J]. Ceramics International,2014,40(7):9293-9301. doi: 10.1016/j.ceramint.2014.01.152
    [14] LIANG K, ZHANG C H, XIANG H W, et al. Effects of modified SiO2 on H2 and CO adsorption and hydrogenation of iron-based catalysts[J]. Journal of Fuel Chemistry and Technology,2019,47(7):769-779. doi: 10.1016/S1872-5813(19)30033-7
    [15] WAN J W, YU J C, DEHUA X, et al. Graphene and g-C3N4 nanosheets cowrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light[J]. Environmental Science & Technology,2013,47(15):8724-8732.
    [16] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials,2009,8(1):76-80. doi: 10.1038/nmat2317
    [17] LIU L, QI Y, YANG J, et al. An AgI@ g-C3N4 hybrid core@shell structure: stable and enhanced photocatalytic degradation[J]. Applied Surface Science,2015,358(A):319-327.
    [18] CHENG B, LE Y, YU J. Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires[J]. Journal of Hazardous Materials,2010,177(1-3):971-977. doi: 10.1016/j.jhazmat.2010.01.013
    [19] JI H, CHANG F, HU X, et al. Photocatalytic degradation of 2, 4, 6-trichlorophenol over g-C3N4 under visible light irradiation[J]. Chemical Engineering Journal,2013,218:183-190. doi: 10.1016/j.cej.2012.12.033
    [20] CAO S W, YUAN Y P, FANG J, et al. In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation[J]. International Journal of Hydrogen Energy,2013,38(3):1258-1266. doi: 10.1016/j.ijhydene.2012.10.116
    [21] CHEN Y, HUANG W, HE D, et al. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation[J]. ACS Applied Materials & Interfaces,2014,6(16):17523-17539.
    [22] ZHOU C, SHI R, SHANG L, et al. Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production[J]. Nano Research,2018,11(6):3462-3468. doi: 10.1007/s12274-018-2003-2
    [23] SHI H, CHEN G, ZHANG C, et al. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel[J]. Acs Catalysis,2014,4(10):3637-3643. doi: 10.1021/cs500848f
    [24] WEN X J, NIU C G, ZHANG L, et al. In-situ synthesis of visible-light-driven plasmonic Ag/AgCl-CdWO4 photocatalyst[J]. Ceramics International,2016,43(2):1922-1929.
    [25] JO B W, KIM C H, TAE G H, et al. Characteristics of cement mortar with nano-SiO2 particles[J]. Construction and Building Materials,2007,21(6):1351-1355. doi: 10.1016/j.conbuildmat.2005.12.020
    [26] SUN Y, YANG J, YANG S, et al. Development of an immunochromatographic lateral flow strip for the simultaneous detection of aminoglycoside residues in milk[J]. Rsc Advances,2018,8(17):9580-9586. doi: 10.1039/C8RA01116H
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1319
  • HTML全文浏览量:  841
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 修回日期:  2021-04-18
  • 录用日期:  2021-04-19
  • 网络出版日期:  2021-04-26
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回