留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VN-Ag-MoO3复合材料的制备及宽温域摩擦学行为

王丽萍 陈树 刘二勇 杜双明 杜慧玲 蔡辉

王丽萍, 陈树, 刘二勇, 等. VN-Ag-MoO3复合材料的制备及宽温域摩擦学行为[J]. 复合材料学报, 2021, 38(12): 4212-4219. doi: 10.13801/j.cnki.fhclxb.20210208.001
引用本文: 王丽萍, 陈树, 刘二勇, 等. VN-Ag-MoO3复合材料的制备及宽温域摩擦学行为[J]. 复合材料学报, 2021, 38(12): 4212-4219. doi: 10.13801/j.cnki.fhclxb.20210208.001
WANG Liping, CHEN Shu, LIU Eryong, et al. Preparation and wide temperature range tribological behavior of VN-Ag-MoO3 composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4212-4219. doi: 10.13801/j.cnki.fhclxb.20210208.001
Citation: WANG Liping, CHEN Shu, LIU Eryong, et al. Preparation and wide temperature range tribological behavior of VN-Ag-MoO3 composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4212-4219. doi: 10.13801/j.cnki.fhclxb.20210208.001

VN-Ag-MoO3复合材料的制备及宽温域摩擦学行为

doi: 10.13801/j.cnki.fhclxb.20210208.001
基金项目: 国家自然科学基金 (51705415);中科院海洋新材料与应用技术重点实验室开放课题(2018K01);陕西省重点研发计划项目(2020GY-115)
详细信息
    通讯作者:

    刘二勇,博士,副教授,硕士生导师,研究方向为固体润滑材料  E-mail:liueryong@xust.edu.cn

  • 中图分类号: TB333

Preparation and wide temperature range tribological behavior of VN-Ag-MoO3 composites

  • 摘要: 利用真空热压烧结技术制备了VN-Ag-MoO3复合材料,研究了Ag2MoO4对VN基复合材料组织结构及宽温域摩擦磨损性能的影响。结果表明:VN-Ag-MoO3复合材料组织较致密,主要由VN、MoO3和Ag组成,其中均匀分布于VN基体的MoO3和Ag由Ag2MoO4经高温分解形成。宽温域摩擦磨损测试表明,Ag2MoO4的添加有效改善了室温(RT)~700℃温域范围VN陶瓷的摩擦磨损性能。其中,700℃时Ag2MoO4含量为10wt%的VN-10Ag-MoO3的摩擦系数(0.285)和磨损率(1.37×10−5 mm3/(N·m))分别较VN降低了23%和72%,这归因于磨损表面的氧化钒、钒酸银和钼酸银等高温润滑相起到了优异的润滑及减磨作用。

     

  • 图  1  VN-Ag-MoO3复合材料的XRD图谱

    Figure  1.  XRD patterns of VN-Ag-MoO3 composites

    图  2  VN-Ag-MoO3复合材料的SEM图像

    Figure  2.  SEM images of VN-Ag-MoO3 composites((a) VN-5Ag-MoO3; (b) VN-10Ag-MoO3; (c) VN-15Ag-MoO3)

    图  3  VN-Ag-MoO4复合材料的元素面分布

    Figure  3.  Element distribution of VN-Ag-MoO4 composite

    图  4  不同温度时VN-Ag-MoO3复合材料的摩擦系数 (a) 及磨损率 (b)

    Figure  4.  Friction coefficient (a) and wear rate (b) of VN-Ag-MoO3 composites at different temperatures

    RT—Room temperature

    图  5  不同温度时VN-Ag-MoO3复合材料的磨损形貌

    Figure  5.  SEM morphologies of worn surfaces of VN-Ag-MoO3 composites at different temperatures ((a) VN- 5Ag-MoO3, RT; (b) VN-10Ag-MoO3, RT; (c) VN-15Ag-MoO3, RT; (d) VN-5Ag-MoO3, 300℃; (e) VN-10Ag-MoO3, 300℃; (f) VN-15Ag-MoO3, 300℃; (g) VN-5Ag-MoO3, 500℃; (h) VN-10Ag-MoO3, 500℃; (i) VN-15Ag-MoO3, 500℃; (j) VN-5Ag-MoO3, 700℃; (k) VN-10Ag-MoO3, 700℃; (l) VN-15Ag-MoO3, 700℃)

    图  6  不同温度时VN-Ag-MoO3复合材料的磨痕三维轮廓图

    Figure  6.  Three-dimensional wear profiles of worn surfaces of VN-Ag-MoO3 composites at different temperatures((a) VN- 5Ag-MoO3, RT; (b) VN-10Ag-MoO3, RT; (c) VN-15Ag-MoO3, RT; (d) VN-5Ag-MoO3, 300℃; (e) VN-10Ag-MoO3, 300℃; (f) VN-15Ag-MoO3, 300℃; (g) VN-5Ag-MoO3, 500℃; (h) VN-10Ag-MoO3, 500℃; (i) VN-15Ag-MoO3, 500℃; (j) VN-5Ag-MoO3, 700℃; (k) VN-10Ag-MoO3, 700℃; (l) VN-15Ag-MoO3, 700℃)

    图  7  不同温度时VN-15Ag-MoO3复合材料磨痕表面的元素含量 (a) 和化学组成 (b)

    Figure  7.  Element content (a) and chemical composition (b) of worn surfaces of VN-15Ag-MoO3 composite at different temperatures

    表  1  VN-Ag-MoO3复合材料的命名

    Table  1.   Naming of VN-Ag-MoO3 composites

    SampleAg2MoO4/wt%
    VN 0
    VN-5Ag-MoO3 5
    VN-10Ag-MoO3 10
    VN-15Ag-MoO3 15
    下载: 导出CSV

    表  2  各元素在VN-Ag-MoO3系复合材料中的含量

    Table  2.   Element content of VN-Ag-MoO3 composites wt%

    Sample Chemical composition
    VNAgMoO
    VN 77.45 16.50 4.41
    VN-5Ag-MoO3 78.08 12.60 3.32 1.58 3.75
    VN-10Ag-MoO3 76.15 10.35 5.54 2.48 4.82
    VN-15Ag-MoO3 73.75 9.26 7.09 2.75 6.32
    下载: 导出CSV

    表  3  VN-Ag-MoO3系复合材料的硬度及密度

    Table  3.   Hardness and density of VN-Ag-MoO3 composites

    CompositionHardness/HVDensity/(g·cm−3)
    VN-5Ag-MoO4 1189.45 5.81
    VN-10Ag-MoO4 1226.50 5.92
    VN-15Ag-MoO4 1170.40 6.10
    下载: 导出CSV
  • [1] 刘二勇, 贾均红, 高义民, 等. 宽温域连续润滑材料的研究进展[J]. 中国表面工程, 2015, 28(4):1-13. doi: 10.11933/j.issn.1007-9289.2015.04.001

    LIU E Y, JIA J H, GAO Y M, et al. Research progress of continuous lubricating materials with wide temperature range[J]. China Surface Engineering,2015,28(4):1-13(in Chinese). doi: 10.11933/j.issn.1007-9289.2015.04.001
    [2] ZHU S Y, CHENG J, QIU Z H, et al. High temperature solid-lubricating materials: A review[J]. Tribology International,2019,133:206-223. doi: 10.1016/j.triboint.2018.12.037
    [3] 国洪建, 贾均红, 张振宇, 等. 脉冲激光沉积VN/Ag复合薄膜的组织及摩擦学性能研究[J]. 材料导报, 2017, 31(2):55-59. doi: 10.11896/j.issn.1005-023X.2017.02.012

    GUO H J, JIA J H, ZHANG Z Y, et al. Microstructure and tribological properties of VN/Ag composite films deposited by pulsed laser deposition[J]. Materials Reports,2017,31(2):55-59(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.02.012
    [4] 刘可心, 王蕾, 杨晨, 等. Ti3SiC2/Cu复合材料的制备与摩擦磨损性能[J]. 复合材料学报, 2020, 37(11):2844-2852.

    LIU K X, WANG L, YANG C, et al. Fabrication and friction and wear properties of Ti3SiC2/Cu composites[J]. Acta Materiae Compositae Sinica,2020,37(11):2844-2852(in Chinese).
    [5] SONG J J, ZHANG Y S, LI T, et al. Tribological behavior and lubrication mechanism of self-lubricating ceramic/metal composites: The effect of matrix type on the friction and wear properties[J]. Wear,2017,372–373:130-138.
    [6] TORRES H, SLAWIK S, GACHOT C, et al. Microstructural design of self-lubricating laser claddings for use in high temperature sliding applications[J]. Surface and Coatings Technology,2018,337:24-34. doi: 10.1016/j.surfcoat.2017.12.060
    [7] 章小峰, 王爱华, 张祥林, 等. 激光熔覆Ni45-CaF2-WS2自润滑涂层组织与性能[J]. 中国有色金属学报, 2008, 18(2):215-220. doi: 10.3321/j.issn:1004-0609.2008.02.004

    ZHANG X F, WANG A H, ZHANG X L, et al. Microstructure and properties of laser cladding Ni45-CaF2-WS2 self-lubricating coating[J]. The Chinese Journal of Nonferrous Metals,2008,18(2):215-220(in Chinese). doi: 10.3321/j.issn:1004-0609.2008.02.004
    [8] 荆阳, 庞思勤, 张学恒, 等. TiAlN-MoS/TiAlN硬质润滑膜研究[J]. 北京理工大学学报, 2002, 22(4):457-459. doi: 10.3969/j.issn.1001-0645.2002.04.015

    JING Y, PANG S Q, ZHANG X H, et al. TiAlN-MoS/TiAlN hard lubricating film research[J]. Journal of Beijing Institute of Technology,2002,22(4):457-459(in Chinese). doi: 10.3969/j.issn.1001-0645.2002.04.015
    [9] 杜之明, 费岩晗, 孙永根, 等. 陶瓷-金属双连续相复合材料的发展现状与未来[J]. 复合材料学报, 2021, 38(2):315-338.

    DU Z M, FEI Y H, SUN Y G, et al. The development and future of ceramic-metal duplex continuous phase compo-sites[J]. Acta Materiae Compositae Sinica,2021,38(2):315-338(in Chinese).
    [10] TAN H, WANG S, YU Y, et al. Friction and wear properties of Al-20Si-5Fe-2Ni-Graphite solid-lubricating composite at elevated temperatures[J]. Tribology International,2018,122:228-235. doi: 10.1016/j.triboint.2018.02.037
    [11] TORRES H, VUCHKOV T, RODRÍGUEZ RIPOLL M, et al. Tribological behaviour of MoS2-based self-lubricating laser cladding for use in high temperature applications[J]. Tribology International,2018,126:153-165. doi: 10.1016/j.triboint.2018.05.015
    [12] AOUADI S M, PAUDEL Y, LUSTER B, et al. Adaptive Mo2N/MoS2/Ag tribological nanocomposite coatings for aerospace applications[J]. Tribology Letters,2008,29(2):95-103. doi: 10.1007/s11249-007-9286-x
    [13] 陕钰, 刘峰, 汪建义, 等. NiCrW-Al2O3-SrCO3-Ag金属陶瓷复合材料的高温摩擦学性能研究[J]. 摩擦学学报, 2015, 35(6):707-713.

    SHAN Y, LIU F, WANG J Y, et al. Study on high temperature tribological properties of NiCrW-Al2O3-SrCO3-Ag cermet composites[J]. Tribology,2015,35(6):707-713(in Chinese).
    [14] AOUADI S M, PAUDEL Y, SIMONSON W J, et al. Tribological investigation of adaptive Mo2N/MoS2/Ag coatings with high sulfur content[J]. Surface & Coatings Technology,2009,203(10):1304-1309.
    [15] LI J, XIONG D, HUANG Z, et al. Effect of Ag and CeO2 on friction and wear properties of Ni-base compo-site at high temperature[J]. Wear,2009,267(1-4):576-584. doi: 10.1016/j.wear.2008.12.050
    [16] YANG J H, LIANG X S, LIU Z G, et al. Friction and wear properties of hot-pressed NiCr-BaCr2O4 high temperature self-lubricating composites[J]. Wear,2013,301(1-2):820-827. doi: 10.1016/j.wear.2013.02.004
    [17] ZHAO Y Q, MU Y T, LIU M. Mechanical properties and frictionwear characteristics of VN/Ag multilayer coatings with heterogeneous and transition interfaces[J]. Transactions of Nonferrous Metals Society of China,2020,30(2):472-483. doi: 10.1016/S1003-6326(20)65227-X
    [18] GE F, ZHU P, MENG F, et al. Achieving very low wear rates in binary transition-metal nitrides: The case of magnetron sputtered dense and highly oriented VN coatings[J]. Surface & Coatings Technology,2014,248:81-90.
    [19] GASSNER G, MAYRHOFER P H, KUTSCHEJ K, et al. A new low friction concept for high temperatures: Lu-bricious oxide formation on sputtered VN coatings[J]. Tribology Letters,2004,17(4):751-756. doi: 10.1007/s11249-004-8083-z
    [20] AOUADI S M, SINGH D P, STONE D S, et al. Adaptive VN/Ag nanocomposite coatings with lubricious behavior from 25 to 1 000℃[J]. Acta Materialia,2010,58(16):5326-5331. doi: 10.1016/j.actamat.2010.06.006
    [21] LIU E Y, WANG W Z, GAO Y M, et al. Tribological properties of adaptive Ni-based composites with addition of lubricious Ag2MoO4 at elevated temperatures[J]. Tribology Letters,2012,47(1):21-30. doi: 10.1007/s11249-012-9958-z
    [22] 慕永涛. 自润滑氮化钒基复合涂层制备及宽温域摩擦磨损特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    MU Y T. Preparation of self-lubricating VN based compo-site coating and study on friction and wear characteristics in wide temperature range[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [23] 董丽荣, 李长生, 王旻璐, 等. Ag/Bi2Sr2CaCu2Ox复合材料摩擦学特性[J]. 复合材料学报, 2009, 26(2):125-130. doi: 10.3321/j.issn:1000-3851.2009.02.022

    DONG L R, LI C S, WANG M L, et al. Tribological properties of Ag/Bi2Sr2CaCu2Ox composites[J]. Acta Materiae Compositae Sinica,2009,26(2):125-130(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.02.022
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  832
  • HTML全文浏览量:  281
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-17
  • 录用日期:  2021-01-27
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回