留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含孔玻璃纤维/环氧树脂复合材料-铝合金层板的拉伸损伤行为与热暴露响应

谢波涛 高亮 江帅 李梦军

谢波涛, 高亮, 江帅, 等. 含孔玻璃纤维/环氧树脂复合材料-铝合金层板的拉伸损伤行为与热暴露响应[J]. 复合材料学报, 2020, 37(11): 1-9
引用本文: 谢波涛, 高亮, 江帅, 等. 含孔玻璃纤维/环氧树脂复合材料-铝合金层板的拉伸损伤行为与热暴露响应[J]. 复合材料学报, 2020, 37(11): 1-9
Botao XIE, Liang GAO, Shuai JIANG, Mengjun LI. Tensile damage behavior and thermal exposure response of glass fiber/epoxy resin composite-aluminum alloy laminates with an open-hole[J]. Acta Materiae Compositae Sinica.
Citation: Botao XIE, Liang GAO, Shuai JIANG, Mengjun LI. Tensile damage behavior and thermal exposure response of glass fiber/epoxy resin composite-aluminum alloy laminates with an open-hole[J]. Acta Materiae Compositae Sinica.

含孔玻璃纤维/环氧树脂复合材料-铝合金层板的拉伸损伤行为与热暴露响应

基金项目: 国家自然科学基金(11502031);2019年吉林省预算内基本建设资金(产业技术研究与开发)计划项目(2019C046-6)
详细信息
    通讯作者:

    高亮,博士,副教授,研究方向为轻质复合材料及结构多功能一体化 E-mail:gaol@ccut.edu.cn

  • 中图分类号: TB332

Tensile damage behavior and thermal exposure response of glass fiber/epoxy resin composite-aluminum alloy laminates with an open-hole

  • 摘要: 采用试验和数值方法研究了含孔玻璃纤维/环氧树脂复合材料-铝合金层板(glass fiber/epoxy resin composite-aluminum alloy laminates, GLARE)层板在不同热暴露温度下的拉伸剩余强度和损伤失效模式,揭示了层间损伤、纤维损伤及基体损伤的演化过程。结果表明:随着热暴露温度升高,含孔GLARE层板剩余强度不断下降,拉伸破坏呈现出明显的纤维断裂与层间分层混合失效模式。热暴露温度越高或开孔直径越大,GLARE层板的层间分层损伤区域越小。随着载荷的增大,沿加载方向的0°纤维和基体的损伤分别呈现出类似“漏斗”形和“花瓣”状的损伤演化形式,而层间损伤区域呈现出一对相对开孔对称的三角形损伤演化形式。基于GLARE层板的剩余强度和损伤失效模式的数值仿真与试验结果吻合较好。
  • 图  1  GLARE3-3/2层板铺层设计

    Figure  1.  Layup design of GLARE3-3/2 laminate

    图  2  GLARE层板固化工艺

    Figure  2.  Curing process for GLARE laminate

    图  3  GLARE层板制备工艺流程

    Figure  3.  Preparation process of GLARE laminate

    图  4  含圆形孔GLARE3-3/2层板试样示意图

    Figure  4.  Schematic diagram of GLARE3-3/2 laminate with an open-hole

    图  5  含孔GLARE3-3/2层板单向拉伸数值模型

    Figure  5.  Numerical model for unidirectional tensile of GLARE3-3/2 with an open-hole

    图  6  不同热暴露温度下GLARE3-3/2层板应力-应变曲线((a) 25℃, (b) 80℃, (c) 120℃)及不同温度下剩余强度随直径的变化(d)

    Figure  6.  Stress-strain curves of GLARE3-3/2 laminate at different thermal exposure temperatures ((a) 25℃, (b) 80℃, (c) 120℃) and variation of residual strength with diameter at different temperatures(d)

    图  7  GLARE3-3/2层板试验与仿真应力-应变曲线

    Figure  7.  Experimental and numerical stress-strain curves of GLARE3-3/2 laminate

    图  8  GLARE3-3/2层板试件拉伸断裂失效

    Figure  8.  Tensile fracture of GLARE3-3/2 laminate with an open-hole

    图  9  含孔GLARE3-3/2层板层间损伤的温度响应

    Figure  9.  Temperature response of interlaminar damage of GLARE3-3/2 laminate with an open-hole

    表  1  2024-T3铝合金材料性能

    Table  1.   Material properties of aluminum 2024-T3

    MaterialE1/GPaE2/GPaG12/GPaν12t/mm
    2024-T3 72 27 0.33 0.5
    下载: 导出CSV

    表  2  玻璃纤维/环氧树脂预浸料材料性能

    Table  2.   Mechanical properties of glass fiber/epoxy resin prepreg

    ParameterValue
    Longitudinal stiffness E11/GPa 48.75a
    Transverse stiffness E22/GPa 14.33a
    Out-of-plane stiffness E33/GPa 14.33a
    Poisson’s ratio υ12, υ13 0.252a
    Poisson’s ratio υ23 0.32a
    Shear modulus G12, G13/MPa 5 100a
    Shear modulus G23/MPa 5 100a
    Longitudinal tensile strength XT/MPa 1 280b
    Longitudinal compressive strength XC/MPa 800b
    Transverse tensile strength YT/MPa 40b
    Transverse compressive strength YC/MPa 145b
    Shear strength S12, S23, S13/MPa 73b
    Out-of-plane tensile strength ZT/MPa 40b
    Note: Superscripts ‘a’ and ‘b’ represent the data from experimental tests and research literature[13], respectively.
    下载: 导出CSV

    表  3  纤维增强树脂复合材料失效准则[16-17]

    Table  3.   Failure criteria of fiber reinforced resin composite[16-17]

    Failure modeFailure criterion
    Fiber tensile (${\varepsilon _{11}} > 0$) $F_{{\rm{f}}t}^2 = {\left( {\dfrac{{{\varepsilon _{11}}}}{{X_{\rm{T}}^\varepsilon }}} \right)^2} + {\left( {\dfrac{{{\varepsilon _{12}}}}{{S_{12}^\varepsilon }}} \right)^2} + {\left( {\dfrac{{{\varepsilon _{13}}}}{{S_{13}^\varepsilon }}} \right)^2}$
    Fiber compression (${\varepsilon _{11}} \leqslant 0$) $F_{{\rm{fc}}}^2 = {\left( {\dfrac{{{\varepsilon _{11}}}}{{X_{\rm{C}}^{11}}}} \right)^2}$
    Matrix tensile ($({\varepsilon _{22}} + {\varepsilon _{33}}) \geqslant 0$) $F_{{\rm{mt}}}^2 = {\left( {\dfrac{{{\varepsilon _{11}} + {\varepsilon _{33}}}}{{Y_{\rm{T}}^\varepsilon }}} \right)^2} + \left( {\dfrac{1}{{S{{_{23}^\varepsilon }^2}}}} \right)\left( {{\varepsilon _{23}}^2 - \dfrac{{{E_{22}}{E_{33}}}}{{{G_{23}}^2}}{\varepsilon _{22}}{\varepsilon _{33}}} \right) + {\left( {\dfrac{{{\varepsilon _{12}}}}{{S_{12}^\varepsilon }}} \right)^2} + {\left( {\dfrac{{{\varepsilon _{13}}}}{{S_{13}^\varepsilon }}} \right)^2}$
    Matrix compression ($({\varepsilon _{22}} + {\varepsilon _{33}}) < 0$) $\begin{array}{l} F_{{\rm{mc}}}^2 = {\left( {\dfrac{{{E_{22}}{\varepsilon _{22}} + {E_{33}}{\varepsilon _{33}}}}{{2{G_{12}}S_{12}^\varepsilon }}} \right)^2} + \left( {\dfrac{{{\varepsilon _{22}} + {\varepsilon _{33}}}}{{Y{{_{\rm{C}}^\varepsilon }^2}}}} \right)\left[ {{{\left( {\dfrac{{{E_{22}}Y_C^\varepsilon }}{{2{G_{12}}S_{12}^\varepsilon }}} \right)}^2} - 1} \right] +\\ \quad\quad\dfrac{1}{{S{{_{23}^\varepsilon }^2}}}\left( {{\varepsilon _{23}}^2 - \dfrac{{{E_{22}}{E_{33}}}}{{{G_{23}}^2}}{\varepsilon _{22}}{\varepsilon _{33}}} \right) + {\left( {\dfrac{{{\varepsilon _{12}}}}{{S_{12}^\varepsilon }}} \right)^2} + {\left( {\dfrac{{{\varepsilon _{13}}}}{{S_{13}^\varepsilon }}} \right)^2} \\ \end{array} $
    Delamination failure (${\varepsilon _{33}} \geqslant 0$) $F_{{\rm{ld}}}^2 = {\left( {\dfrac{{{\varepsilon _{33}}}}{{Z_{\rm{T}}^\varepsilon }}} \right)^2} + {\left( {\dfrac{{{\varepsilon _{13}}}}{{S_{13}^\varepsilon }}} \right)^2} + {\left( {\dfrac{{{\varepsilon _{23}}}}{{S_{23}^\varepsilon }}} \right)^2}$
    Notes:$X_{\rm{T}}^\varepsilon $—Longitudinal tensile strength strain; $X_{\rm{C}}^\varepsilon $—Longitudinal compressive strength strain; $Y_{\rm{T}}^\varepsilon $—Transverse tensile strength strain; $Y_{\rm{C}}^\varepsilon $—Transverse compressive strength strain; $S_{12}^\varepsilon $、$S_{13}^\varepsilon $ and $S_{23}^\varepsilon $—Shear strain in the corresponding directions; $Z_{\rm{T}}^\varepsilon $—Out-of-plane tensile strength strain.
    下载: 导出CSV

    表  4  界面粘接单元的材料属性[24]

    Table  4.   Mechanical properties of cohesive element[24]

    Elastic propertiesDamage initiationDamage evolution
    E/GPaG/GPaNmax/MPaSmax/MPaTmax/MPaGIC /J·m−2GIIC/J·m−2GIIIC/J·m−2
    2 0.75 65 38 38 2 4 4
    下载: 导出CSV

    表  5  2024-T3铝合金的各向同性硬化数据[25]

    Table  5.   Isotropic hardening data of aluminum 2024-T3[25]

    Yield stress/MPa300320340355375390410430450470484
    Plastic strain/% 0.0 0.16 0.047 0.119 0.449 1.036 2.13 3.439 5.133 8.0 14.71
    下载: 导出CSV

    表  6  含孔GLARE3-3/2层板的损伤演化

    Table  6.   Damage evolution of GLARE3-3/2 with an open-hole

    Open-hole diameter DFiber and matrix tensile damage evolution
    2 mm Increment step 144 722 153 859 164 658 182 922
    4 mm Increment step 115 583 152 266 157 353 170 045
    6 mm Increment step 112 855 132 492 144 664 151 741
    8 mm Increment step 71 256 83 994 95 396 127 229
    10 mm Increment step 56 025 64 276 75 626 115 428
    下载: 导出CSV
  • [1] NOWAK T. Elastic-plastic behavior and failure analysis of selected fiber metal laminates[J]. Composite Structures,2017,183:450-456.
    [2] PATIL N A, MULIK S S, WANGIKAR K S, et al. Characterization of glass laminate aluminium reinforced epoxy-A review[J]. Procedia Manufacturing,2018,20:554-562. doi:  10.1016/j.promfg.2018.02.083
    [3] 吴素君, 解晓伟, 晋会锦, 等. 纤维金属层板力学性能的研究现状[J]. 复合材料学报, 2018, 35(4):733-747.

    WU S J, XIE X W, JIN H J, et al. Mechanical properties of fibre metal laminates: A review[J]. Acta Materiae Compositae Sinica,2018,35(4):733-747(in Chinese).
    [4] VOGELESANG L B, VLOT A. Development of fibre metal laminates for advanced aerospace structures[J]. Journal of Materials Processing Technology,2000,103(1):1-5. doi:  10.1016/S0924-0136(00)00411-8
    [5] TAMER S, EGEMEN A, MUSTAFA Ö B, et al. A review: Fibre metal laminates, background, bonding types and applied test methods[J]. Materials & Design,2011,32(7):3671-3685.
    [6] 李尧. 飞机温度环境适应性要求分析和确定技术探讨[J]. 装备环境工程, 2008, 5(6):60-64. doi:  10.3969/j.issn.1672-9242.2008.06.013

    LI Y. Analysis and confirmation techniques for requirements of temperature environmental worthiness of aircraft[J]. Equipment Environmental Engineering,2008,5(6):60-64(in Chinese). doi:  10.3969/j.issn.1672-9242.2008.06.013
    [7] RANS C D, ALDERLIESTEN R C, BENEDICTUS R. Predicting the influence of temperature on fatigue crack propagation in fibremetal laminates[J]. Engineering Fracture Mechanics,2011,78(10):2193-2201. doi:  10.1016/j.engfracmech.2011.04.005
    [8] PATRYK J, JAROSLAW B, BARBARA S. Interlaminar shear strength of fibre metal laminates after thermal cycles[J]. Composite Structures,2018,206:876-887. doi:  10.1016/j.compstruct.2018.09.001
    [9] MAJERSKI K, SUROWSKA B, BIENIAS J. The comparison of effects of hygrothermal conditioning on mechanical properties of fibre metal laminates and fibre reinforced polymers[J]. Composites Part B: Engineering,2018,142:108-116. doi:  10.1016/j.compositesb.2018.01.002
    [10] 李晓峰, 曲贵民, 李博儒. 圆孔对GLARE层合板抗冲击性能的影响[J]. 复合材料学报, 2016, 33(9):2104-2114.

    LI X F, QU G M, LI B R. Effect of circular hole on impact resistance of GLARE laminates[J]. Acta Materiae Compositae Sinica,2016,33(9):2104-2114(in Chinese).
    [11] 翟豹, 王树彬, 张博明, 等. 阳极氧化工艺对纤维-铝合金层板力学性能的影响[J]. 复合材料学报, 2013, 30(03):154-159.

    ZHAI B, WANG S B, ZHANG B M, et al. Effect of anodizing process on the mechanical properties of glass fiber reinforced aluminum laminates[J]. Acta Materiae Compositae Sinica,2013,30(03):154-159(in Chinese).
    [12] 陈凯, 胡玉冰, 刘成. 温度对Ti/Cf/PMR超混杂层板力学性能的影响研究[J]. 机械制造与自动化, 2017, 46(6):31-34.

    CHEN K, HU Y B, LIU C. Influence of temperature on mechanical properties of Ti/Cf/PMR hybrid laminates[J]. Machine Building & Automation,2017,46(6):31-34(in Chinese).
    [13] KADDOUR A, HINTON M. Input data for test cases used in benchmarking triaxial failure theories of composites[J]. Journal of Composite Materials,2012,46(19-20):2295-2312. doi:  10.1177/0021998312449886
    [14] 中华人民共和国航空航天工业部. HB/Z197-1991结构胶接铝合金磷酸阳极化工艺规范[S]. 北京: 航空航天工业部, 1991.

    Aerospace Industry of Thee People’s Republic of China. HB/Z197-1991 Phosphoric acid anodizing process specifications of structural bonding of aluminum alloy[S]. Beijing: Aerospace Industry, 1991(in Chinese).
    [15] 中国国家标准化管理委员会. GB/T 1447-2005纤维增强塑料拉伸性能试验方法[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. GB/T 1447-2005 Fiber-reinforced plastics composites-determination of tensile properties[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [16] BOTELHO E C, ALMEIDA R S, PARDINI L C, et al. Elastic properties of hygrothermally conditioned glare laminate[J]. International Journal of Engineering Science,2007,45(1):163-172. doi:  10.1016/j.ijengsci.2006.08.017
    [17] HASZIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47:329-334. doi:  10.1115/1.3153664
    [18] HUANG C H, LEE Y J. Experiments and simulation of the static contact crush of composite laminated plates[J]. Composite Structures,2003,61:265-270. doi:  10.1016/S0263-8223(02)00047-8
    [19] XIAO J R, GAMA B A, Gillespie J W. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading[J]. Composite Structures,2007,78:182-196. doi:  10.1016/j.compstruct.2005.09.001
    [20] FRIZZELL R M, MCCARTHY C T, MCCARTHY M A. Predicting the effects of geometry on the behaviour of fibre metal laminate joints[J]. Composite Structures,2011,93:1877-1889. doi:  10.1016/j.compstruct.2011.01.018
    [21] LINDE P, BOER H D. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures,2006,73(2):221-228. doi:  10.1016/j.compstruct.2005.11.062
    [22] VO T P, GUAN Z W, CANTWELL W J, et al. Low-impulse blast behaviour of fibre-metal laminates[J]. Composite Structures,2012,94:954-965. doi:  10.1016/j.compstruct.2011.10.027
    [23] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology,1996,56(4):439-449. doi:  10.1016/0266-3538(96)00005-X
    [24] SUGIMAN S, CROCOMBE A D, KATNAM K B. Investigating the static response of hybrid fibre-metal laminate doublers loaded in tension[J]. Composite Part B: Engineering,2014,42:867-884.
    [25] CHEN J F, MOROZOV E V, SHANKAR K, et al. Progressive failure analysis of perforated aluminium/CFRP fibre metal laminates using a combined elastoplastic damage model and including delamination effects[J]. Composite Structures,2014,114:64-79. doi:  10.1016/j.compstruct.2014.03.046
    [26] LIN Y, HUANG Y, HUANG T, et al. Open-hole tensile behaviour and failure prediction of carbon fibre reinforced aluminium laminates[J]. Polymer Composites,2018,39(11):123-138.
  • [1] 郭小农, 王丽, 罗永峰, 徐航, 邹家敏.  CFRP增强铝合金叠层复合材料短柱力学性能, 复合材料学报. 2020, 37(): 1-13.
    [2] 王计真, 刘小川.  考虑面内载荷的复合材料层合板冲击性能, 复合材料学报. 2020, 37(8): 1868-1874. doi: 10.13801/j.cnki.fhclxb.20191125.001
    [3] 李传习, 李游, 高有为, 胡正, 刘一鸣.  纳米SiO2质量分数对胶粘碳纤维增强树脂复合材料板-钢搭接界面黏结性能的影响, 复合材料学报. 2020, 37(10): 1-17. doi: 10.13801/j.cnki.fhclxb.20200319.001
    [4] 王庆轩, 丁一宁.  玄武岩纤维网格布增强混凝土板双向弯曲性能试验, 复合材料学报. 2020, 37(5): 1200-1210. doi: 10.13801/j.cnki.fhclxb.20190823.001
    [5] 齐佳旗, 段玥晨, 铁瑛, 侯玉亮, 李成.  结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响, 复合材料学报. 2020, 37(6): 1352-1363. doi: 10.13801/j.cnki.fhclxb.20190815.001
    [6] 佘小红, 杜娟, 朱雯莉.  高强度聚苯胺-聚丙烯酸/聚丙烯酰胺导电水凝胶的制备与性能, 复合材料学报. 2020, 37(): 1-8.
    [7] 王遥, 曹东风, 胡海晓, 冀运东, 宋培豪, 李书欣.  单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究, 复合材料学报. 2020, 37(): 1-11.
    [8] 韩耀璋, 李进, 张佃平, 康少付, 马鹏, 周少雄.  原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响, 复合材料学报. 2020, 37(7): 1531-1538. doi: 10.13801/j.cnki.fhclxb.20191017.001
    [9] 万陶磊, 常俊杰, 曾雪峰, 李媛媛.  基于经验模态分解和相关系数对玻璃纤维增强聚合物复合材料板的损伤识别及扫查成像, 复合材料学报. 2020, 37(8): 1921-1931. doi: 10.13801/j.cnki.fhclxb.20191031.003
    [10] 陈丁丁, 朱萌, 胡其高, 王曼漪, 王蕊.  含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制, 复合材料学报. 2020, 37(6): 1312-1320. doi: 10.13801/j.cnki.fhclxb.20190822.001
    [11] 曹玉贵, 赵国旭, 尹亚运.  基于广义回归神经网络的纤维增强聚合物复合材料约束损伤混凝土强度预测, 复合材料学报. 2020, 37(): 1-6.
    [12] 张扬, 曹玉贵, 胡志礼.  基于Griffith破坏准则的FRP约束未损伤混凝土和损伤混凝土的抗压强度统一模型, 复合材料学报. 2020, 37(9): 2358-2366. doi: 10.13801/j.cnki.fhclxb.20191223.002
    [13] 段瑛涛, 武肖鹏, 王智文, 敬敏, 栗娜, 刘强, 宁慧铭, 胡宁.  碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能, 复合材料学报. 2020, 37(10): 1-10. doi: 10.13801/j.cnki.fhclxb.20200215.002
    [14] 杨凤祥, 陈静芬, 陈善富, 刘志明.  基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测, 复合材料学报. 2020, 37(9): 2207-2222. doi: 10.13801/j.cnki.fhclxb.20200110.002
    [15] 王新玲, 杨广华, 钱文文, 李可, 朱俊涛.  高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系, 复合材料学报. 2020, 37(12): 1-9.
    [16] 张聪, 夏超凡, 袁振, 李志华.  混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系, 复合材料学报. 2020, 37(7): 1754-1762. doi: 10.13801/j.cnki.fhclxb.20191114.001
    [17] 张兆杭, 崔少康, 谭志勇, 杨振宇, 卢子兴.  C/C-SiC缎纹编织复合材料孔隙缺陷的建模及其拉伸性能仿真, 复合材料学报. 2020, 37(8): 1969-1980. doi: 10.13801/j.cnki.fhclxb.20191216.001
    [18] 郭瑞卿, 张一帆, 吕庆涛, 陈利.  多层多向层联三维机织复合材料的拉伸性能, 复合材料学报. 2020, 37(10): 1-9. doi: 10.13801/j.cnki.fhclxb.20200110.001
    [19] 罗健, 石建军, 贾彬, 莫军, 黄辉.  低温暴露对碳纤维/环氧树脂复合材料拉伸力学性能的影响, 复合材料学报. 2020, 37(12): 1-12.
    [20] 赵晟, 张继文.  一种基于复合材料剩余强度的衍生疲劳损伤模型, 复合材料学报. 2020, 37(10): 1-9. doi: 10.13801/j.cnki.fhclxb.20191224.002
  • 加载中
计量
  • 文章访问数:  167
  • HTML全文浏览量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 录用日期:  2020-02-02
  • 网络出版日期:  2020-09-25

目录

    /

    返回文章
    返回