留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MAH-GO/MBMI-E51复合材料的微观结构及力学性能

陈宇飞 赵辉 滕成君

陈宇飞, 赵辉, 滕成君. MAH-GO/MBMI-E51复合材料的微观结构及力学性能[J]. 复合材料学报, 2022, 39(2): 601-607. doi: 10.13801/j.cnki.fhclxb.20210419.002
引用本文: 陈宇飞, 赵辉, 滕成君. MAH-GO/MBMI-E51复合材料的微观结构及力学性能[J]. 复合材料学报, 2022, 39(2): 601-607. doi: 10.13801/j.cnki.fhclxb.20210419.002
CHEN Yufei, ZHAO Hui, TENG Chengjun. Microstructure and mechanical properties of MAH-GO/MBMI-E51 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 601-607. doi: 10.13801/j.cnki.fhclxb.20210419.002
Citation: CHEN Yufei, ZHAO Hui, TENG Chengjun. Microstructure and mechanical properties of MAH-GO/MBMI-E51 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 601-607. doi: 10.13801/j.cnki.fhclxb.20210419.002

MAH-GO/MBMI-E51复合材料的微观结构及力学性能

doi: 10.13801/j.cnki.fhclxb.20210419.002
基金项目: 哈尔滨创新人才专项(2015RAXXJ029);哈尔滨理工大学创新项目(201910214126)
详细信息
    通讯作者:

    陈宇飞,博士,教授,研究方向为介电复合材料、高性能航空材料结构与性能  E-mail:chenyufei@hrbust.edu.cn

  • 中图分类号: TB332

Microstructure and mechanical properties of MAH-GO/MBMI-E51 composites

  • 摘要: 以少层石墨烯为原料,采用改进的Hummers法制备氧化石墨烯(GO),再用马来酸酐(MAH)接枝改性制得MAH-GO。以4,4′-二氨基二苯甲烷型双马来酰亚胺树脂和双酚A环氧树脂(MBMI-E51)为基体、4′4-二氨基二苯甲烷(DDM)为固化剂,MAH-GO为增强体,采用原位聚合法制备MAH-GO/MBMI-E51复合材料,并表征MAH-GO的微观结构及其含量对复合材料力学性能的影响。结果表明:GO微观片层结构清晰完整,MAH通过化学键成功接枝到了GO表面,GO片层出现卷曲现象,选用化学滴定法测得接枝率约为7.26%。MAH-GO/MBMI-E51复合材料的微观形貌显示:随着增强体的增加,复合材料断面形貌由最初平直的“河流状”变为微裂纹发展延伸的“树枝状”再到密集的“韧窝状”,断裂方式实现了由脆性断裂向韧性断裂的转变。当MAH-GO添加量为1.25wt%时,复合材料的冲击强度、弯曲强度与弯曲模量分别为24.18 kJ/m2、209 MPa和14.15 GPa,比基体树脂分别提高了200%、81.7%和524%。复合材料的力学性能得到了极大的改善。

     

  • 图  1  石墨粉、GO和MAH-GO的FTIR图谱

    Figure  1.  FTIR spectra of graphite powder, GO and MAH-GO

    图  2  石墨粉、GO和MAH-GO的XRD图谱

    Figure  2.  XRD spectra of graphite powder, GO and MAH-GO

    图  3  GO (a) 和MAH-GO (b) 的SEM图像

    Figure  3.  SEM images of GO (a) and MAH-GO (b)

    图  4  基体和不同MAH-GO含量的MAH-GO/MBMI-E51复合材料的微观形貌SEM图像

    Figure  4.  SEM images of the matrix and MAH-GO/MBMI-E51 composites with different MAH-GO contents

    图  5  MAH-GO/MBMI-E51复合材料的冲击强度 (a)、弯曲强度和弯曲模量 (b)

    Figure  5.  Impact strength (a), flexural strength and flexural modulus (b) of MAH-GO/MBMI-E51 composites

    表  1  马来酸酐-氧化石墨烯(MAH-GO)/-4,4′-二苯甲烷型双马来酰亚胺-双酚A环氧树脂(MBMI-E51)复合材料的样品编号

    Table  1.   Sample number of maleic anhydride-graphene oxide (MAH-GO)/4,4′ -diaminodiphenylmethane bismaleimide-bisphenol A epoxy resin (MBMI-E51) composite

    No.ComponentsMAH-GO mass
    fraction/wt%
    G0 0wt%MAH-GO/MBMI-E51 0
    G1 0.25wt%MAH-GO/MBMI-E51 0.25
    G2 0.50wt%MAH-GO/MBMI-E51 0.50
    G3 0.75wt%MAH-GO/MBMI-E51 0.75
    G4 1.0wt%MAH-GO/MBMI-E51 1.00
    G5 1.25wt%MAH-GO/MBMI-E51 1.25
    G6 1.5wt%MAH-GO/MBMI-E51 1.50
    下载: 导出CSV
  • [1] SELVAGANAPATHI A, ALAGAR M, et al. Studies on synthesis and characterization of hydroxyl-terminated poly-dimethylsiloxane modified epoxy bismaleimide matrices[J]. High Performance Polymers,2013,25(6):622-633. doi: 10.1177/0954008313477666
    [2] YUFEI C, ZHICHAO L, CHENGJUN T, et al. Dielectric properties of polyether sulfone/bismaleimide resin composite based on nanoalumina modified by super-critical ethanol[J]. Journal of Electronic Materials,2016,45(11):6026-6032. doi: 10.1007/s11664-016-4835-4
    [3] 陈兵, 王晓洁, 王喜占, 等. 环氧树脂增韧改性研究进展[J]. 中国胶黏剂, 2017, 26(2):55-58.

    CHEN bing, WANG Xiaojie, WANG Xizhan, et al. Research progress of epoxy resin in toughening modification[J]. China Adhesives,2017,26(2):55-58(in Chinese).
    [4] GIANNAKOPOULOS G, MASANIA K, CTALOR A. Toughening of epoxy using core-shell particles[J]. Journal of Materials Science,2011,46(46):327-338.
    [5] 李泽帅, 赵雄燕, 王鑫, 等. 双马来酰亚胺树脂的改性研究进展[J]. 塑料, 2016, 21(2):91-94.

    LI Zeshuai, ZHAO Xiongyan, WANG Xin, et al. Research progress in the modification of bismaleimide resin[J]. Plastics,2016,21(2):91-94(in Chinese).
    [6] TAKEICHI T, UCHIDA S, INOUE Y, et al. Preparation and properties of polymer alloys consisting of high-molecular-weight benzoxazine and bismaleimide[J]. High Performance Polymers,2014,26(3):265-273. doi: 10.1177/0954008313510958
    [7] ZHANG L, NA L, CHEN P, et al. Cure mechanism of novel bismaleimide resins based on fluorene cardo moiety and their thermal properties[J]. Journal of Macromolecular Science Part A,2018,55(3):1-9.
    [8] CHENG Q, BAO J, PARK J G, et al. High mechanical performance composite conductor: Multi-walled carbon nanotube sheet/bismaleimide nanocomposites[J]. Advanced Functional Materials,2009,19(20):3219-3225. doi: 10.1002/adfm.200900663
    [9] PEI S F, WEI Q W, HUANG K, et al. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation[J]. Nature Communications,2018,9:145. doi: 10.1038/s41467-017-02479-z
    [10] HU Y, LI Z, LI H Q, et al. Synthesis of graphene oxide using mildly oxidized graphite through ultrasonic exfoliation[J]. Surface Review and Letters,2017,24(6):1750087. doi: 10.1142/S0218625X17500871
    [11] LI W, XUE F, LI Q, et al. Modification of bismaleimide resin by using aminopropyl triethoxysilane functionalised graphene oxide[J]. Plastics Rubber and Composites,2018,47(5):187-191. doi: 10.1080/14658011.2018.1459354
    [12] MALAS A, DAS C K. Effect of graphene oxide on the physical, mechanical and thermo-mechanical properties of neoprene and chlorosulfonated polyethylene vulcanizates[J]. Composites Part B: Engineering,2015,79:639-648. doi: 10.1016/j.compositesb.2015.04.051
    [13] 陈宇飞, 田麒源, 董磊, 等. 马来酸酐接枝氧化石墨烯并改性双马树脂复合材料的微观结构及力学性能[J]. 复合材料学报, 2016, 21(2):91-94.

    CHEN Yufei, TIAN Qiyuan, DONG Lei, et al. Microstructure and mechanical properties of bismaleimide composite modified by graphene oxide grafting with maleic anhydride[J]. Acta Materiae Compositea Sinica,2016,21(2):91-94(in Chinese).
    [14] 何丽霞. 马来酸酐接枝改性稀土异戊橡胶的制备及性能[J]. 高分子材料科学与工程, 2019, 35(2):165-170.

    HE L X. Preparation and properties of rare earth isoprene rubber grafted with maleic anhydride[J]. Polymer Materials Science and Engineering,2019,35(2):165-170(in Chinese).
    [15] 李文, 张华华, 闫瑞涛, 等. 热熔胶用马来酸酐接枝聚乙烯研究进展[J]. 化工进展, 2016, 35(9):2845-2849.

    LI Wen, ZHANG Huahua, YAN Ruitao, et al. Research progress of maleic anhydride grafted polyethylene for hot melt adhesive[J]. Chemical Industry and Engineering Progress,2016,35(9):2845-2849(in Chinese).
    [16] 国家质量监督检验检疫总局. 树脂浇铸体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision. Inspection and quarantine test methods for properties of resin casting boby: GB/T 2567—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [17] TANG C, YAN H X, et al. Novel phosphorus-containing polyhedral oligomeric silsesquioxane functionalized graphene oxide: Preparation and its performance on the mechanical and flame-retardant properties of bismaleimide composite[J]. Journal of Polymer Research,2017,24(10):157. doi: 10.1007/s10965-017-1310-8
    [18] CHEN Yufei, WU Yunzhong, DAI Guoqing, et al. Characterization and dielectric properties of bismaleimide composites modified by SiO2-coated graphene[J]. Journal of Electronic Materials,2020,49(3):1889-1895.
    [19] CHEN Z, YAN H, LYU Q, et al. Ternary hybrid nanoparticles of reduced graphene oxide/graphene-like MoS2/zirconia as lubricant additives for bismaleimide composites with improved mechanical and tribological properties[J]. Composites Part A: Applied Science and Manufacturing,2017,101:98-107. doi: 10.1016/j.compositesa.2017.06.008
    [20] WANG Mingye, MA Lichun, SHI Longlong. Chemical grafting of nano-SiO2 onto graphene oxide via thiolene click chemistry and its effect on the interfacial and mechanical properties of GO/epoxy composites[J]. Composites Science and Technology,2019,182:107751.
    [21] JIANG M L, ZOU X Q, HUANG Y, et al. The effect of bismaleimide on thermal, mechanical, and dielectric properties of allyl-functional bisphthalonitrile/bismaleimide system[J]. High Performance Polymers,2017,29(9):1016-1026. doi: 10.1177/0954008316667788
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  933
  • HTML全文浏览量:  379
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-22
  • 修回日期:  2021-03-18
  • 录用日期:  2021-04-11
  • 网络出版日期:  2021-04-20
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回