留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向氢空、无增湿操作条件的高保水性质子交换膜的制备与性能

姜永燚 杨溟洋 侯明 刘金玲 许思传

姜永燚, 杨溟洋, 侯明, 等. 面向氢空、无增湿操作条件的高保水性质子交换膜的制备与性能[J]. 复合材料学报, 2021, 38(11): 3884-3895. doi: 10.13801/j.cnki.fhclxb.20210302.001
引用本文: 姜永燚, 杨溟洋, 侯明, 等. 面向氢空、无增湿操作条件的高保水性质子交换膜的制备与性能[J]. 复合材料学报, 2021, 38(11): 3884-3895. doi: 10.13801/j.cnki.fhclxb.20210302.001
JIANG Yongyi, YANG Mingyang, HOU Ming, et al. Preparation and Application Research of Super Absorbent Polymer Membrane for Proton Exchange Membrane Fuel Cells[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3884-3895. doi: 10.13801/j.cnki.fhclxb.20210302.001
Citation: JIANG Yongyi, YANG Mingyang, HOU Ming, et al. Preparation and Application Research of Super Absorbent Polymer Membrane for Proton Exchange Membrane Fuel Cells[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3884-3895. doi: 10.13801/j.cnki.fhclxb.20210302.001

面向氢空、无增湿操作条件的高保水性质子交换膜的制备与性能

doi: 10.13801/j.cnki.fhclxb.20210302.001
基金项目: 国家自然科学基金 (21777221)
详细信息
    通讯作者:

    许思传,博士,教授,博士生导师,研究方向为燃料电池内部过程仿真、零部件与系统技术 E-mail:scxu@tongji.edu.cn

  • 中图分类号: TB324

Preparation and Application Research of Super Absorbent Polymer Membrane for Proton Exchange Membrane Fuel Cells

  • 摘要: 作为质子交换膜燃料电池(PEMFC)的一个重要应用场景,开发满足无人机用的低温质子交换膜燃料电池(Low Temperature-PEMFC)正受到越来越多的关注。无人机所采用的PEMFC操作条件比较特殊,作为原料的H2、空气均为无加湿的干气。针对这一特殊操作条件,需开发相应的具有保水能力的质子交换膜。为此,首先合成了一种具有高保水性的高分子树脂(PAAAM),将其加入Nafion溶液中混合均匀,利用溶液浇铸法制膜,探索并优化了PAAAM的加入量;随后,对保水复合膜进行了FTIR、SEM、质子传导率、保水性、溶胀率、拉伸强度、热失重性能等表征,并进行电池输出性能测试;最终结果表明:Nafion系质子交换膜在原料为干空气、干H2的条件下,最适宜的操作温度区间为50~55℃。当PAAAM加入量为1.0wt%时,Nafion基复合膜(NFPAM1)具有更优的电池性能。当电池温度55℃、干燥H2、空气流量分别为0.1 L·min−1和0.55 L·min−1时,采用NFPAM1复合膜的PEMFC最高功率密度为691 mW·cm−2

     

  • 图  1  聚丙烯酸/丙烯酰胺(PAAAM)树脂的合成过程与保水机制示意图

    Figure  1.  Preparation process and illustration of water absorption mechanism of polyacrylic acid/acrylamide (PAAAM)

    SAP—Superabsorbent resin

    图  2  PAAAM高吸水树脂(SAP)形貌的SEM图像

    Figure  2.  SEM images of morphology for PAAAM superabsorbent resin (SAP)

    图  3  PAAAM SAP的吸水能力测试

    Figure  3.  Saturated water absorptive value before and after water absorption test for PAAAM SAP

    图  4  复合膜与Nafion-CS膜的FTIR图谱

    Figure  4.  FTIR spectra of the composite membranes and Nafion-CS membrane

    图  5  Nafion-CS重铸膜和三种Nafion基复合膜的表面形貌SEM图像

    Figure  5.  SEM images of Nafion-CS recasting membrane and 3 type Nafion-based composite membrane surface

    图  6  全增湿条件下Nafion-CS膜与三种Nafion膜的质子传导率

    Figure  6.  Proton conductivity of Water uptake dependence on temperature for Nafion-CS membrane and 3 type Nafion-based composite membranes under fully humidification

    图  7  Nafion复合膜中PAAAM吸水网络的溶胀和扩展示意图

    Figure  7.  Illustration of swelling and expansion for PAAAM network after absorbing water in Nafion-based composite membrane

    图  8  不同温度和不同增湿度下Nafion-CS膜与三种Nafion膜的质子传导率

    Figure  8.  Proton conductivity of Nafion-CS membrane and 3 type Nafion-based composite membranes under different temperature and humidification

    图  9  Nafion-CS膜与三种Nafion膜的吸水率随温度的变化

    Figure  9.  Water uptake dependence on temperature for Nafion-CS membrane and 3 type Nafion-based composite membranes

    图  10  Nafion-CS膜与三种Nafion膜的溶胀率随温度的变化

    Figure  10.  Swelling ratio dependence on temperature for Nafion-CS membrane and 3 type Nafion-based composite membranes

    图  11  Nafion-CS和PAAAM及其复合膜的TG曲线

    Figure  11.  TG curves of the Nafion-CS membranes and PAAAM

    图  12  几种膜在H2/空气无增湿操作、不同电池温度下的极化曲线和功率密度曲线比较

    Figure  12.  I-V and power density curves for the membranes with a flow rate of 0.1/0.55 L·min−1 of H2/Air under different cell temperatures without humidification

    图  13  四种膜在不同工作温度下的高频欧姆阻抗谱

    Figure  13.  High-frequency ohmic resistance of the membranes at different cell temperature

    图  14  NFPAM1复合膜在不同电池工作温度下的I-V性能

    Figure  14.  I-V performance of NFPAM1 at different cell temperature

    图  15  NFPAM1复合膜在不同工作温度下的1000 mA·cm−2的欧姆阻抗值 (a) 与其在50℃不同电流密度下的欧姆阻抗谱 (b)

    Figure  15.  Ohmic resistanceof NFPAM1 at 1000 mA·cm−2 and different temperature (a) and impedance spectroscopy for different current density at 50℃ (b) for NFPAM1

    表  1  PAAAM的合成配方

    Table  1.   Recipes for the synthesis of PAAAM

    AA (neutrali-
    zation 60%)/g
    AM/
    g
    Crosslinker/
    mg
    Initiator/
    mg
    Content 60 10 6 60
    Notes: AA—Acrylic acid; AM—Acrylamide.
    下载: 导出CSV

    表  2  几种保水复合膜的制膜配方

    Table  2.   Contents of water-retaining composite membranes.

    Nafion D520/
    wt%
    P(AA-co-AM)/
    wt%
    P(AA-co-AM)/
    mg
    Nafion-CS 100 0 0
    NFPAM1 99.0 1.0 5.1
    NFPAM2 97.6 2.4 12.3
    NFPAM3 94.0 6.0 31.9
    下载: 导出CSV

    表  3  Nafion-CS、NFPAM1和NFPAM2膜的力学性能

    Table  3.   Mechanical property of Nafion-CS, NFPAM1 and NFPAM2

    Thickness/
    μm
    Tensile strength/
    MPa
    Elongation/
    %
    Nafion-CS 22±2 5.57 30.7
    NFPAM1 21±1 9.52 35.7
    NFPAM2 21±1 6.73 25.2
    下载: 导出CSV

    表  4  几种复合膜制备MEA的最高功率密度

    Table  4.   Highest power density of MEA prepared by composite membranes

    Membrane
    material
    Highest power density/
    (mW·cm−2)
    Nafion-CS 664
    NFPAM1 691
    NFPAM2 662
    NFPAM3 605
    下载: 导出CSV
  • [1] 衣宝廉. 燃料电池—原理•技术•应用[M]. 北京: 化学工业出版社, 2003: 1-2.

    YI Baolian. Fuel cell—Priciple, technology, applicaions[M]. Beijing: Chemical Industry Press, 2003: 1-2(in Chinese).
    [2] JI M, WEI Z. A review of water management in polymer electrolyte membrane fuel cells[J]. Energies,2009,2(4):1057. doi: 10.3390/en20401057
    [3] LARMINIE J, DICKS A. Fuel cell systems explained (Second edition)[M]. Chichester: John Wiley & Sons Ltd, 2003.
    [4] SUBIN K, JITHESH P K. Experimental study on self-humidified operation in PEM fuel cells[J]. Sustainable Energy Technologies and Assessments,2018,27:17-22.
    [5] WATANABE M, UCHIDA H, SEKI Y, et al. Self-humidifying polymer electrolyte membranes for fuel cells[J]. Journal of the Electrochemical Society,1996,143(12):3847-3852. doi: 10.1149/1.1837307
    [6] WATANABE M, UCHIDA H, EMORI M. Analyses of self-humidification and suppression of gas crossover in Pt-dispersed polymer electrolyte membranes for fuel cells[J]. Journal of the Electrochemical Society,1998,145(4):1137-1141. doi: 10.1149/1.1838429
    [7] 朱晓兵, 张华民, 张宇, 等. 常压氢空自增湿燃料电池用复合质子交换膜[J]. 电源技术, 2007, 31(4):291-295.

    ZHU Xiaobing, ZHANG Huamin, ZHANG Yu, et al. A multilayer PTFE-reinforced self-humidifying membrane for fuel cell with dry H2/air under ambient pressure[J]. Chinese Journal of Power Sources,2007,31(4):291-295(in Chinese).
    [8] ZHU X, ZHANG H, ZHANG Y, et al. An ultrathin self-humidifying membrane for PEM fuel cell application: Fabrication, characterization, and experimental analysis[J]. Journal of Physical Chemistry B,2006,110(29):14240-14248. doi: 10.1021/jp061955s
    [9] KUMAR G G, KIM A R, NAHM K S, et al. Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC[J]. International Journal of Hydrogen Energy,2009,34(24):9788-9794. doi: 10.1016/j.ijhydene.2009.09.083
    [10] ZHANG B, CAO Y, JIANG S, et al. Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity[J]. Journal of Membrane Science,2016,518:243-253.
    [11] STEFFY N J, PARTHIBAN V, SAHU A K. Uncovering Nafion-multiwalled carbon nanotube hybrid membrane for prospective polymer electrolyte membrane fuel cell under low humidity[J]. Journal of Membrane Science,2018,563:65-74. doi: 10.1016/j.memsci.2018.05.051
    [12] ZOHURIAAN-MEHR M J, KABIRI K. Superabsorbent polymer materials: A review[J]. Iranian Polymer Journal,2008,17(6):451-477.
    [13] 王趁义, 王国贺, 王凤玲, 等. 氧化石墨烯改性聚(丙烯酸/丙烯酰胺)高吸水树脂的制备及性能研究[J]. 化工新型材料, 2019, 47(5):90-95.

    WANG Chenyi, WANG Guohe, WANG Fengling, et al. Preparation and property of P(AA/AM)SAP modified by GO[J]. New Chemical Materials,2019,47(5):90-95(in Chinese).
    [14] 杨帆. 聚乙烯醇/丙烯酸/丙烯酰胺高吸水树脂的制备及性能研究[D]. 秦皇岛: 燕山大学, 2015.

    YANG Fan. Synthesis and properties of superabsorbent resin of polyvinyl alcohol/acrylicacid/acrylamide[D]. Qinhuangdao: Yanshan University, 2015(in Chinese).
    [15] 栗海峰, 范力仁, 景录如, 等. 坡缕石/聚丙烯酸(钠)高吸水复合材料的溶胀行为[J]. 复合材料学报, 2009, 26(3):24-28.

    LI Haifeng, FAN Liren, JING Luru, et al. Swelling behavior of palygorskite/poly(sodiumacrylate)super absorbent composites[J]. Acta Materiae Compositae Sinica,2009,26(3):24-28(in Chinese).
    [16] 中国国家标准化管理委员会. 质子交换膜燃料电池 第3部分: 质子交换膜测试方法: GB/T 20042.3—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Proton exchange membrane fuel cell: Part 3—Test method for proton exchange membrane: GB/T 20042.3—2009[S]. Beijing: China Standars Press, 2009(in Chinese).
    [17] YU J R, YI B L, XING D M, et al. Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells[J]. Physical Chemistry Chemical Physics,2003,5(3):611-615. doi: 10.1039/b209020a
    [18] WU F, ZHANG Y, LIU L, et al. Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste[J]. Carbohydrate Polymers,2012,87(4):2519-2525. doi: 10.1016/j.carbpol.2011.11.028
    [19] HASAN M, CHEN J, WALDECKER J R, et al. Determining the critical plastically dissipated energy for fatigue crack growth in PEM fuel cell membrane and its environmental sensitivity[J]. International Journal of Fatigue,2020,138:105697. doi: 10.1016/j.ijfatigue.2020.105697
    [20] KUNDU S, SIMON L C, FOWLER M, et al. Mechanical properties of Nafion (TM) electrolyte membranes under hydrated conditions[J]. Polymer,2005,46(25):11707-11715. doi: 10.1016/j.polymer.2005.09.059
    [21] BAO Y, MA J, LI N. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel[J]. Carbohydrate Polymers,2011,84(1):76-82. doi: 10.1016/j.carbpol.2010.10.061
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  892
  • HTML全文浏览量:  380
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 录用日期:  2021-02-05
  • 网络出版日期:  2021-03-02
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回