留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验

柏佳文 魏洋 张依睿 缪坤廷 郑开启

柏佳文, 魏洋, 张依睿, 等. 新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J]. 复合材料学报, 2021, 38(9): 3084-3093. doi: 10.13801/j.cnki.fhclxb.20201117.001
引用本文: 柏佳文, 魏洋, 张依睿, 等. 新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J]. 复合材料学报, 2021, 38(9): 3084-3093. doi: 10.13801/j.cnki.fhclxb.20201117.001
BAI Jiawen, WEI Yang, ZHANG Yirui, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3084-3093. doi: 10.13801/j.cnki.fhclxb.20201117.001
Citation: BAI Jiawen, WEI Yang, ZHANG Yirui, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3084-3093. doi: 10.13801/j.cnki.fhclxb.20201117.001

新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验

doi: 10.13801/j.cnki.fhclxb.20201117.001
基金项目: 国家自然科学基金(51778300);江苏省自然科学基金(BK20151520;BK20191390);江苏省重点研发计划项目(BE2020703);江苏省六大人才高峰项目(JZ-017);江苏省高校“青蓝工程”项目(2020)
详细信息
    通讯作者:

    魏洋,教授,博士生导师,研究方向为新型材料与新型结构  E-mail:wy78@njfu.edu.cn

  • 中图分类号: TB442

Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns

  • 摘要: 为研究原状海水海砂混凝土在复合管混凝土中的应用可行性,提出一种新型由内外壁纤维增强复合材料(FRP)和夹心钢管复合的碳纤维增强复合材料(CFRP)-钢复合管海水海砂混凝土柱结构。对12个新型CFRP-钢复合管海水海砂混凝土圆柱试件进行了轴压试验,研究了CFRP层数和核心混凝土强度等级变化对其轴压性能的影响。试验结果表明,内外壁CFRP的包裹能够有效地提高结构承载力和变形能力;CFRP-钢复合管海水海砂普通混凝土圆柱破坏形态为混凝土压溃,而CFRP-钢复合管海水海砂高强混凝土圆柱破坏形态为剪切破坏;结构的极限应力与CFRP层数、混凝土强度呈正相关,而极限应变随着CFRP层数增加而提高,却随着混凝土强度提高而减小;核心混凝土和钢管对极限应力的贡献随着CFRP层数增加基本不变,且当包裹两层及以上CFRP时,CFRP对试件极限应力的贡献占主导地位。

     

  • 图  1  碳纤维增强复合材料(CFRP)-钢复合管海水海砂混凝土结构概念图

    Figure  1.  Concept and structure compositions of seawater and sea sand concrete filled circular carbon fiber reinforced polymer (CFRP)-steel composite tube columns

    图  2  新型CFRP-钢复合管海水海砂混凝土结构组成部分环向受力分解图

    Figure  2.  Circumferential force decomposition diagram of each component of new seawater and sea sand concrete filled circular CFRP-steel composite tube columns

    图  3  CFRP-钢复合管的制作过程

    Figure  3.  Fabrication process of CFRP-steel composite tube

    图  4  CFRP-钢复合管海水海砂混凝土轴压试验加载及测量装置

    Figure  4.  Axial compression test loading and measuring device of seawater and sea sand concrete filled circular CFRP-steel composite tube columns

    图  5  对比钢管及钢管海水海砂混凝土试件破坏形态

    Figure  5.  Comparison of failure modes between steel tube and seawater and sea sand concrete filled circular steel tube columns

    图  6  典型CFRP-钢复合管海水海砂混凝土试件破坏形态

    Figure  6.  Typical failure modes of seawater and sea sand concrete filled circular CFRP-steel composite tube columns

    图  7  CFRP-钢复合管海水海砂混凝土试件名义应力-应变关系曲线

    Figure  7.  Nominal stress-strain relationship curves of seawater and sea sand concrete filled circular CFRP-steel composite tube columns

    图  8  CFRP-钢复合管海水海砂混凝土轴压试验结果参数化分析

    Figure  8.  Parametric analysis of axial compression test results of seawater and sea sand concrete filled circular CFRP-steel composite tube columns

    图  9  CFRP-钢复合管海水海砂混凝土极限应力模型预测与试验结果对比

    Figure  9.  Comparison between ultimate stress model and test results of seawater and sea sand concrete filled circular CFRP-steel composite tube columns

    A—Average value; S—Standard deviation; E—Mean absolute error

    表  1  CFRP-钢复合管海水海砂混凝土轴压试验结果

    Table  1.   Test result of seawater and sea sand concrete filled circular CFRP-steel composite tube columns under axial compression

    Specimen
    number
    H/mmD/mmts/mmInner-FRP layersOuter-FRP layersfc0/MPafcu/MPaεcuFailure mode
    S4.5 400 133 4.5 0 0 Local buckling
    CS4.5 400 133 4.5 0 0 43.8 Concrete crushing
    HS4.5 400 133 4.5 0 0 64.0 Shear failure
    C1S4.5C1-1 400 133 4.5 1 1 43.8 144.2 0.0220 Concrete crushing
    C1S4.5C1-2 400 133 4.5 1 1 43.8 139.2 0.0195 Concrete crushing
    C1S4.5C2-1 400 133 4.5 1 2 43.8 160.4 0.0234 Concrete crushing
    C1S4.5C2-2 400 133 4.5 1 2 43.8 161.0 0.0240 Concrete crushing
    C1S4.5C3-1 400 133 4.5 1 3 43.8 179.0 0.0280 Concrete crushing
    C1S4.5C3-2 400 133 4.5 1 3 43.8 180.4 0.0290 Concrete crushing
    HC1S4.5C1-1 400 133 4.5 1 1 64.0 163.7 0.0151 Shear failure
    HC1S4.5C1-2 400 133 4.5 1 1 64.0 163.6 0.0148 Shear failure
    HC1S4.5C2-1 400 133 4.5 1 2 64.0 193.3 0.0197 Shear failure
    HC1S4.5C2-2 400 133 4.5 1 2 64.0 197.4 0.0234 Shear failure
    HC1S4.5C3-1 400 133 4.5 1 3 64.0 211.9 0.0210 Shear failure
    HC1S4.5C3-2 400 133 4.5 1 3 64.0 213.9 0.0210 Shear failure
    Notes: H—Height of all specimens; D—Outer diameter of all specimens; ts—Thickness of steel tube; fc0—Cylinder concrete strength; fcu—Ultimate stress of specimen; εcu—Ultimate strain of specimen. The specimens were numbered according to the different parameters of the specimens, and two specimens with the same parameters were prepared, which were distinguished by “−1” and “−2”. S4.5—Hollow steel tube specimen with a thickness of 4.5 mm; CS4.5—Common strength seawater and sea sand concrete filled circular steel tube columns with 4.5 mm steel tube thickness; HS4.5—High strength seawater and sea sand concrete filled circular steel tube columns with 4.5 mm steel tube thickness; C1S4.5C1-1—Common strength seawater and sea sand concrete filled circular CFRP-steel composite tube columns with 4.5 mm steel tube thickness, one-layer inner-FRP and one-layer outer-FRP; HC1S4.5C2-1—High strength seawater and sea sand concrete filled circular CFRP-steel composite tube columns with 4.5 mm steel tube thickness, one-layer inner-FRP and two-layer outer-FRP.
    下载: 导出CSV

    表  2  CFRP和钢管力学性能

    Table  2.   Mechanical properties of CFRP and steel tube

    Materialfy/MPaff/MPaεfModulus of elasticity/GPa
    CFRP 3331.7 0.0139 239.8
    Steel tube 328.8 486.2 206.2
    Notes: fy—Yield stress of material; ff—Ultimate tensile stress of material; εf—Ultimate tensile strain of material.
    下载: 导出CSV

    表  3  普通FRP-钢复合管约束混凝土承载力计算模型

    Table  3.   Calculation model of confined concrete bearing capacity of concrete filled FRP-steel composite tube

    Source of the modelCalculation formula
    Zhang et al[17] $\dfrac{{{f_{{\rm{cu}}}}}}{{{f_{{\rm{c0}}}}}} = 1 + 1.27{\xi _{\rm{s}}} + 1.28{\xi _{\rm{f}}}$
    Tang et al[25] ${N_{\rm{u}}} = \left( {1 + {\eta _{{\rm{cap}}}}} \right)\left( {1.27F{A_{\rm{s}}} + 0.85{f_{{\rm{c0}}}}{A_{\rm{c}}}} \right)$
    Dong et al[26] ${N_{\rm{u}}} = \left[ {0.95 + {f_{\rm{1}}} + \min \left( {{f_{\rm{2}}}{\rm{ }},{f_{\rm{3}}}} \right)} \right]{A_{\rm{c}}}{f_{{\rm{c0}}}} + {A_{\rm{s}}}{f_{\rm{y}}}$
    Lu et al[27] ${N_{\rm{u}}} = \left( {1 + 1.8{\xi _{\rm{s}}} + 1.15{\xi _{\rm{f}}}} \right){A_{\rm{c}}}{f_{{\rm{c0}}}}$
    Ding et al[18] ${N_{\rm{u}}} = \left( {1 + 1.7{\xi _{\rm{s}}} + 1.7{\xi _{\rm{f}}}} \right){f_{{\rm{c0}}}}{A_{\rm{c}}}$
    Tao et al[28] ${N_{\rm{u}}} = \left( {1 + 1.02{\xi _{\rm{s}}}} \right){f_{{\rm{c0}}}}{A_{\rm{s}}} + 1.15{\xi _{\rm{f}}}{f_{{\rm{c0}}}}{A_{\rm{c}}}$
    Notes: fcu—Ultimate stress of specimen; fc0—Cylinder concrete strength; ξs—Effective constraint coefficient of steel tube; ξf—Effective constraint coefficient of FRP; Nu—Bearing capacity of specimen; ηcap—Increase index of capacity; F—Minimum between yield strength and 0.7 tensile strength of carbon steel; As—Cross-sectional area of steel tube; Ac—Cross-sectional area of concrete; f1, f2, f3—Three factors of the steel tube, FRP and concrete characteristics, respectively.
    下载: 导出CSV
  • [1] ZHANG Q T, XIAO J Z, ZHANG P, et al. Mechanical behaviour of seawater sea-sand recycled coarse aggregate concrete columns under axial compressive loading[J]. Construction and Building Materials,2019,229:117050. doi: 10.1016/j.conbuildmat.2019.117050
    [2] TENG J G, XIANG Y, YU T, et al. Development and mechanical behaviour of ultra-high-performance seawater sea-sand concrete[J]. Advances in Structural Engineering,2019(6):1-21.
    [3] QIN R, LAU D, TAM L, et al. Experimental investigation on interfacial defect criticality of frp-confined concrete columns[J]. Sensors,2019,19(3):468.
    [4] GHARACHORLOU A, RAMEZANIANPOUR A A. Durability of concrete cylinder specimens strengthened with FRP laminates under penetration of chloride ions[J]. International Journal of Civil Engineering,2010,8(4):327-336.
    [5] MOHAMMEDAMEEN A, EVIK A, ALZEEBAREE R, et al. Performance of FRP confined and unconfined engineered cementitious composite exposed to seawater[J]. Journal of Composite Materials,2019,53(28-30):4285-4304.
    [6] GUO F, AL-SAADI S, SINGH RAMAN R K, et al. Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment[J]. Corrosion Science,2018,141:1-13. doi: 10.1016/j.corsci.2018.06.022
    [7] DONG Z Q, WU G, ZHAO Xi L, et al. Mechanical properties of discrete BFRP needles reinforced seawater sea-sand concrete-filled GFRP tubular stub columns[J]. Construction and Building Materials,2020,244:118330.
    [8] WANG J, FENG P, HAO T Y, et al. Axial compressive behavior of seawater coral aggregate concrete-filled FRP tubes[J]. Construction and Building Materials,2017,147:272-285. doi: 10.1016/j.conbuildmat.2017.04.169
    [9] ZHANG T, NIU D T, RONG C. GFRP-confined coral aggregate concrete cylinders: The experimental and theoretical analysis[J]. Construction and Building Materials,2019,218:206-213. doi: 10.1016/j.conbuildmat.2019.05.052
    [10] ZHOU A, QIN R Y, CHOW C L, et al. Structural performance of FRP confined seawater concrete columns under chloride environment[J]. Composite Structures,2019,216:12-19. doi: 10.1016/j.compstruct.2019.02.058
    [11] ZENG J J, GAO W Y, DUAN Z J, et al. Axial compressive behavior of polyethylene terephthalate/carbon FRP-confined seawater sea-sand concrete in circular columns[J]. Construction and Building Materials,2020,234:117383. doi: 10.1016/j.conbuildmat.2019.117383
    [12] JIANG T, TENG J G. Analysis-oriented stress-strain models for FRP-confined concrete[J]. Engineering Structures,2007,29(11):2968-2986. doi: 10.1016/j.engstruct.2007.01.010
    [13] LI Y L, ZHAO X L, RAMAN SINGH R K, et al. Tests on seawater and sea sand concrete-filled CFRP, BFRP and stainless steel tubular stub columns[J]. Thin-Walled Structures,2016,108:163-184. doi: 10.1016/j.tws.2016.08.016
    [14] LI Y L, ZHAO X L, SINGH R K R, et al. Experimental study on seawater and sea sand concrete filled GFRP and stainless steel tubular stub columns[J]. Thin-Walled Structures,2016,106:390-406. doi: 10.1016/j.tws.2016.05.014
    [15] WEI Y, WU G, LI G F. Performance of circular concrete-filled fiber-reinforced polymer-steel composite tube columns under axial compression[J]. Journal of Reinforced Plastics & Composites,2014,33(20):1911-1928.
    [16] WEI Y, ZHANG Y R, CHAI J L, et al. Experimental investigation of rectangular concrete-filled fiber reinforced polymer (FRP)-steel composite tube columns for various corner radii[J]. Composite Structures,2020,244:112311. doi: 10.1016/j.compstruct.2020.112311
    [17] ZHANG Y R, WEI Y, BAI J W, et al. Stress-strain model of an FRP-confined concrete filled steel tube under axial compression[J]. Thin-Walled Structures,2019,142:149-159. doi: 10.1016/j.tws.2019.05.009
    [18] DING F X, LU D R, BAI Y, et al. Behaviour of CFRP-confined concrete-filled circular steel tube stub columns under axial loading[J]. Thin-Walled Structures,2018,125:107-118. doi: 10.1016/j.tws.2018.01.015
    [19] HU H S, XU L, GUO Z X, et al. Behavior of eccentrically loaded square spiral-confined high-strength concrete-filled steel tube columns[J]. Engineering Structures,2020,216:110743. doi: 10.1016/j.engstruct.2020.110743
    [20] 张依睿, 魏洋, 柏佳文, 等. 纤维增强聚合物复合材料-钢复合圆管约束混凝土轴压性能预测模型[J]. 复合材料学报, 2019, 36(10):2478-2485.

    ZHANG Y R, WEI Y, BAI J W, et al. Models for predicting axial compression behavior of fiber reinforced polymer-steel composite circular tube confined concrete[J]. Acta Materiae Compositae Sinica,2019,36(10):2478-2485(in Chinese).
    [21] 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of China. Test method for tensile properties of directional fiber reinforced polymer matrix composites: GB/T 3354—2014[S]. Beijing: Standards Press of China, 2014(in Chinese).
    [22] 中国国家标准化管理委员会. 金属材料拉伸试验: 第一部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of China. Tensile test of metallic materials: Part 1: Test method at room tempera-ture: GB/T 228.1—2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
    [23] 张素梅, 刘界鹏, 马乐, 等. 圆钢管约束高强混凝土轴压短柱的试验研究与承载力分析[J]. 土木工程学报, 2007, 40(3):24-31. doi: 10.3321/j.issn:1000-131X.2007.03.005

    ZHANG S M, LIU J P, MA L, et al. Axial compression test and analysis of circular tube confined HSC stub columns[J]. China Civil Engineering Journal,2007,40(3):24-31(in Chinese). doi: 10.3321/j.issn:1000-131X.2007.03.005
    [24] 郭莹, 许天祥, 刘界鹏. 圆CFRP-钢复合管约束高强混凝土短柱轴压试验研究[J]. 建筑结构学报, 2019, 40(5):124-131.

    GUO Y, XU T X, LIU J P. Experimental study on axial behavior of circular CFRP-steel composite tubed high-strength concrete stub columns[J]. Journal of Building Structures,2019,40(5):124-131(in Chinese).
    [25] TANG H Y, CHEN J L, FAN L Y, et al. Experimental investigation of FRP-confined concrete-filled stainless steel tube stub columns under axial compression[J]. Thin-Walled Structures, 2020, 146(10): 106483.
    [26] DONG C X, KWAN A K H, HO J C M. Effects of external confinement on structural performance of concrete-filled steel tubes[J]. Journal of Constructional Steel Research,2017,132:72-82. doi: 10.1016/j.jcsr.2016.12.024
    [27] LU Y Y, LI N, LI S. Behavior of FRP-confined concrete-filled steel tube columns[J]. Polymers,2014,6(5):1333-1349. doi: 10.3390/polym6051333
    [28] TAO Z, HAN L H, ZHUANG J P. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns[J]. Advances in Structural Engineering,2007,10(1):37-46. doi: 10.1260/136943307780150814
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1187
  • HTML全文浏览量:  518
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-21
  • 录用日期:  2020-10-31
  • 网络出版日期:  2020-11-17
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回