留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三聚氰胺植酸/硬质聚氨酯泡沫复合材料的制备及其热解动力学特性

张冰 杨素洁 杨亚东 刘新亮 刘梦茹 唐刚 刘秀玉

张冰, 杨素洁, 杨亚东, 等. 三聚氰胺植酸/硬质聚氨酯泡沫复合材料的制备及其热解动力学特性[J]. 复合材料学报, 2021, 38(8): 2505-2516. doi: 10.13801/j.cnki.fhclxb.20201110.002
引用本文: 张冰, 杨素洁, 杨亚东, 等. 三聚氰胺植酸/硬质聚氨酯泡沫复合材料的制备及其热解动力学特性[J]. 复合材料学报, 2021, 38(8): 2505-2516. doi: 10.13801/j.cnki.fhclxb.20201110.002
ZHANG Bing, YANG Sujie, YANG Yadong, et al. Preparation and pyrolysis kinetics of melamine phytates/rigid polyurethane foam composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2505-2516. doi: 10.13801/j.cnki.fhclxb.20201110.002
Citation: ZHANG Bing, YANG Sujie, YANG Yadong, et al. Preparation and pyrolysis kinetics of melamine phytates/rigid polyurethane foam composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2505-2516. doi: 10.13801/j.cnki.fhclxb.20201110.002

三聚氰胺植酸/硬质聚氨酯泡沫复合材料的制备及其热解动力学特性

doi: 10.13801/j.cnki.fhclxb.20201110.002
基金项目: 国家自然科学基金(51403004);中国博士后科学基金面上项目(2017M610399)
详细信息
    通讯作者:

    刘秀玉,博士,副教授,硕士生导师,研究方向为有机建筑保温材料、阻燃聚合物复合材料  E-mail:cristalliu@163.com

  • 中图分类号: TB332;TQ328.3

Preparation and pyrolysis kinetics of melamine phytates/rigid polyurethane foam composites

  • 摘要: 以实验室自制的三聚氰胺植酸(MEL-PA)为阻燃剂,采用一步法全水发泡工艺制备一系列三聚氰胺植酸/硬质聚氨酯泡沫(MEL-PA/RPUF)复合材料。采用热重分析(TG)与热分析动力学研究复合材料热稳定性,揭示其降解机制。研究表明,随着MEL-PA负载量的增加,MEL-PA/RPUF在700 ℃的残炭率逐渐提升。结合TGA数据,通过Coats-Redfern和Horowitz-Metzger积分法计算复合材料主要降解阶段的反应等级n、活化能E及指前因子A。结果表明,空气氛围中MEL-PA促进了复合材料的初始降解,而在高温阶段使复合材料具有更高的热稳定性,并且两种计算方法具有相同规律。N2氛围中,MEL-PA30/RPUF(MEL-PA质量分数为10.3wt%)与RPUF相比,n增大,E升高。表明MEL-PA30/RPUF的反应更为复杂,热稳定性更高。通过Criado法进行数学模型与实验分析,验证了Coats-Redfern法的可行性。MEL-PA/RPUF复合材料的热氧化降解动力学研究结果为分析不同阻燃体系的RPUF的阻燃性能提供参考依据。

     

  • 图  1  RPUF及MEL-PA/RPUF复合材料在空气 ((a)、(b)) 和N2 ((c)、(d)) 条件下的TG及DTG曲线

    Figure  1.  TG and DTG curves of RPUF and MEL-PA/RPUF composites under air ((a), (b)) and N2 ((c), (d)) conditions

    图  2  空气氛围下RPUF和MEL-PA/RPUF复合材料在α为0.05~0.45范围内的Coats-Redfern分析结果

    Figure  2.  Results of Coats-Redfern method for RPUF and RPUF/MEL-PA composites with α of 0.05~0.45 under air condition

    图  3  空气氛围下RPUF和MEL-PA/RPUF复合材料在α为0.65~0.90范围内的Coats-Redfern分析结果

    Figure  3.  Results of Coats-Redfern method for RPUF and RPUF/MEL-PA composites with α of 0.65~0.90 under air condition

    图  4  空气氛围下RPUF和MEL-PA/RPUF复合材料在α为0.05~0.45范围内Horowitz-Metzger分析结果

    Figure  4.  Results of Horowitz-Metzger method for RPUF and MEL-PA/RPUF composites with α of 0.05~0.45 under air condition

    图  5  空气氛围下RPUF和MEL-PA/RPUF复合材料在α为0.65~0.90范围内Horowitz-Metzger分析结果

    Figure  5.  Results of Horowitz-Metzger method for RPUF and MEL-PA/RPUF composites with α of 0.65~0.90 under air condition

    图  6  N2氛围下RPUF和MEL-PA30/RPUF在α为0.1~0.7范围内Coats-Redfern法((a)、(b))和Horowitz-Metzger法((c)、(d))分析结果

    Figure  6.  Results of Coats-Redfern ((a), (b)) and Horowitz-Metzger ((c), (d)) methods for RPUF and MEL-PA30/RPUF with α of 0.1~0.7 under N2 condition

    图  7  Criado法获得的固相反应机制的理论曲线与RPUF和MEL-PA30/RPUF的实验曲线

    Figure  7.  Theoretical curves of solid-phase reaction mechanism and experimental curves of RPUF and MEL-PA30/RPUF obtained by Criado method

    表  1  硬质聚氨酯泡沫(RPUF)及三聚氰胺植酸/硬质聚氨酯泡沫(MEL-PA/RPUF)复合材料组成

    Table  1.   Composition of rigid polyurethane foam (RPUF) and melamine phytates/rigid polyurethane foam (MEL-PA/RPUF) composites

    SampleLY-4110/gPM-200/gA33/gAK-8805/gLC/gTEOA/gWater/gMEL-PA/gMEL-PA/wt%
    RPUF 100 150 1 2 0.5 3 2 0 0
    MEL-PA10/RPUF 100 150 1 2 0.5 3 2 10 3.7
    MEL-PA20/RPUF 100 150 1 2 0.5 3 2 20 7.1
    MEL-PA30/RPUF 100 150 1 2 0.5 3 2 30 10.3
    Notes: LY-4110—Polyether polyol; PM-200—Polyaryl polymethylene isocyanate; A33—Triethylene diamine; AK-8805—Silicone surfactant; LC—Dibutyltin dilaurate; TEOA—Triethanolamine.
    下载: 导出CSV

    表  2  RPUF和MEL-PA/RPUF在空气条件下的TGA结果

    Table  2.   TGA results of RPUF and MEL-PA/RPUF under air condition

    SampleT−5%/℃T−50%/℃Tmax/℃Vmax/(%·℃−1)Char residueat
    700℃/wt%
    Step 1Step 2Step 1Step 2
    RPUF 271 376 312 569 0.569 0.425 1.2
    MEL-PA10/RPUF 266 370 310 567 0.595 0.411 4.2
    MEL-PA20/RPUF 250 373 326 570 0.582 0.391 4.4
    MEL-PA30/RPUF 233 375 325 566 0.602 0.392 4.8
    Notes: T−5%—Onset degradation temperature; T−50%—Midpoint temperature of the degradation; Tmax—Maximum decomposition temperature; Vmax—Maximum decomposition rate.
    下载: 导出CSV

    表  3  RPUF和MEL-PA/RPUF30在N2条件下的TGA结果

    Table  3.   TGA results of RPUF and MEL-PA/RPUF30 under N2 condition

    SampleT−5%/℃T−50%/℃Tmax/℃Char residueat
    700℃/wt%
    Step 1Step 2
    RPUF25433833546312.4
    MEL-PA30/
    RPUF
    24234734048720.6
    下载: 导出CSV

    表  4  Criado法的积分机理函数$ g\left(\alpha \right) $和微分机制函数$ f\left(\alpha \right) $表达式

    Table  4.   Expressions of integral mechanism function $ g\left(\alpha \right) $ and differential mechanism function $ f\left(\alpha \right) $ of Criado method

    Reaction mechanismCode$ f\left(\alpha \right) $$ g\left(\alpha \right) $
    Random nucleation and nuclei growth
    Two-dimensional A2 2(1−$ \alpha $)[−ln(1−$ \alpha $)]1/2 [−ln(1−$ \alpha $)]1/2
    Three-dimensional A3 3(1−$ \alpha $)[−ln(1−$ \alpha $)]2/3 [−ln(1−$ \alpha $)]1/3
    Four-dimensional A4 4(1−$ \alpha $)[−ln(1−$ \alpha $)]3/4 [−ln(1−$ \alpha $)]1/4
    Limiting surface reaction between both phases
    One-dimensional R1 1 $ \alpha $
    Contracting sphere R2 2(1−$ \alpha $)1/2 1−(1−a)1/2
    Contracting cylinder R3 3(1−$ \alpha $)2/3 1−(1−a)1/3
    Diffusion
    One-way transport D1 1/(2$ \alpha $) $ \alpha $2
    Two-way transport D2 [−ln(1−a)]−1 (1−$ \alpha $) ln(1−$ \alpha $)+$ \alpha $
    Three-way transport D3 3/2[1−(1−$ \alpha $)1/3]−1(1−$ \alpha $)2/3 [1−(1−$ \alpha $)1/3]2
    Ginstling-Brounshtein equation D4 3/2[(1−$ \alpha $)−1/3−1]−1 (1−2/3$ \alpha $)− (1−$ \alpha $)2/3
    Order of reaction
    First order F1 1−$ \alpha $ −ln(1−$ \alpha $)
    Second order F2 (1−$ \alpha $)2 (1−$ \alpha $)−1−1
    Third order F3 (1−$ \alpha $)3 [(1−$ \alpha $)−2−1]/2
    Exponential nucleation
    Power law, n = 1/2 P2 2$ \alpha $1/2 $ \alpha $1/2
    Power law, n = 1/2 P3 3$ \alpha $2/3 $ \alpha $1/3
    Power law, n = 1/4 P4 4$ \alpha $3/4 $ \alpha $1/4
    下载: 导出CSV

    表  5  空气氛围下加热速率为20℃/min的Coats-Redfern法获得的RPUF及MEL-PA/RPUF复合材料动力学参数

    Table  5.   Kinetic parameters of RPUF and MEL-PA/RPUF composites obtained by Coats-Redfern method with heating rates of 20℃/min in air atmosphere

    αSamplenE/(kJ·mol−1)lnAR2
    0.05-0.45 RPUF 5.5 126.15 25.03 0.99963
    MEL-PA10/RPUF 4 107.65 21.02 0.99915
    MEL-PA20/RPUF 2.5 70.07 13.66 0.99867
    MEL-PA30/RPUF 0.2 45.45 6.94 0.99526
    0.65-0.90 RPUF 0.4 25.33 1.13 0.98784
    MEL-PA10/RPUF 0.2 17.30 −0.47 0.97172
    MEL-PA20/RPUF 0.6 30.36 2.13 0.99286
    MEL-PA30/RPUF 0.8 38.00 3.61 0.99332
    Notes: α—Conversion rate; n—Reaction grade; E—Activation energy; A—Pre exponential factor.
    下载: 导出CSV

    表  6  空气氛围下加热速率为20℃/min的Horowitz-Metzger法获得的RPUF及MEL-PA/RPUF复合材料动力学参数

    Table  6.   Kinetic parameters of RPUF and MEL-PA/RPUF composites obtained by Horowitz-Metzger method with heating rates of 20℃/min in air atmosphere

    αSamplenE/(kJ·mol−1)lnAR2
    0.05-0.45 RPUF 7 157.06 31.82 0.99967
    MEL-PA10/RPUF 5.5 139.87 28.16 0.99942
    MEL-PA20/RPUF 3.5 103.21 20.09 0.99931
    MEL-PA30/RPUF 1.5 72.35 13.10 0.99782
    0.65-0.90 RPUF 0.4 39.22 3.55 0.99552
    MEL-PA10/RPUF 0.1 28.85 1.63 0.99345
    MEL-PA20/RPUF 0.8 51.83 5.86 0.99703
    MEL-PA30/RPUF 1 60.01 7.36 0.99695
    下载: 导出CSV

    表  7  N2氛围下加热速率为20℃/min的Coats-Redfern和Horowitz-Metzger法获得的RPUF及MEL-PA30/RPUF复合材料动力学参数

    Table  7.   Kinetic parameters of RPUF and MEL-PA30/RPUF composites obtained by Coats-Redfern and Horowitz-Metzger methods with heating rate of 20℃/min in N2 atmosphere

    MethodSamplenE/(kJ·mol−1)lnAR2
    Coats-Redfern RPUF 0.8 61.14 10.75 0.99820
    MEL-PA30/RPUF 1.8 80.93 15.46 0.99752
    Horowitz-Metzger RPUF 1.4 89.13 16.86 0.99891
    MEL-PA30/RPUF 2.3 109.66 21.67 0.99766
    下载: 导出CSV
  • [1] AKDOGAN E, ERDEM M, UREYEN M E, et al. Rigid polyurethane foams with halogen-free flame retardants: Thermal insulation, mechanical, and flame retardant properties[J]. Journal of Applied Polymer Science,2020,137(1):47611.
    [2] XU W Z, WANG G S, XU J Y, et al. Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam[J]. Journal of Hazardous Materials,2019,379:120819.
    [3] LIU X, HAO J W, GAAN S, et al. Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials[J]. RSC Advances,2016,6(78):74742-74756. doi: 10.1039/C6RA14345H
    [4] 韦兴文, 李明, 周筱雨, 等. 湿度对玻璃微珠增强硬质聚氨酯复合泡沫塑料黏弹力学性能影响[J]. 复合材料学报, 2013, 30(1):218-222.

    WEI X W, LI M, ZHOU X Y, et al. Influence of humidity on viscoelastic behavior of glass microsphere reinforced rigid polyurethane syntactic foams[J]. Acta Materiae Compositae Sinica,2013,30(1):218-222(in Chinese).
    [5] YUAN Y, WANG W, SHI Y Q, et al. The influence of highly dispersed Cu2O-anchored MoS2 hybrids on reducing smoke toxicity and fire hazards for rigid polyurethane foam[J]. Journal of Hazardous Materials,2020,382:121028.
    [6] CHEN Y H, WANG Q. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder[J]. Polymer Degradation and Stability,2007,92(2):280-291. doi: 10.1016/j.polymdegradstab.2006.11.004
    [7] NIE S B, ZHOU C, PENG C, et al. Thermal oxidative degradation kinetics of novel intumescent flame-retardant polypropylene composites[J]. Journal of Thermal Analysis and Calorimetry,2015,120(2):1183-1191. doi: 10.1007/s10973-015-4393-7
    [8] MENG X Y, YE L, ZHANG X G, et al. Effects of expandable graphite and ammonium polyphosphate on the flame-retardant and mechanical properties of rigid polyurethane foams[J]. Journal of Applied Polymer Science,2009,114(2):853-863. doi: 10.1002/app.30485
    [9] GAO L P, ZHENG G Y, ZHONG Y H, et al. Synergistic effect of expandable graphite, melamine polyphosphate and layered double hydroxide on improving the fire behavior of rosin-based rigid polyurethane foam[J]. Industrial Crops and Products,2013,50:638-647. doi: 10.1016/j.indcrop.2013.07.050
    [10] DENG H W, ZHAO P H, LIU Y Q, et al. Halogen Free flame retardant rigid polyurethane foam with a novel phosphorus-nitrogen intumescent flame retardant[J]. Journal of Applied Polymer Science,2014,131(11):39581.
    [11] ZHANG M, ZHANG J W, CHEN S G, et al. Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine and cardanol[J]. Polymer Degradation and Stability,2014,110:27-34.
    [12] YANG H Y, WANG X, SONG L, et al. Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams[J]. Polymers for Advanced Technologies,2014,25(9):1034-1043. doi: 10.1002/pat.3348
    [13] WU D H, ZHAO P H, ZHANG M, et al. Preparation and properties of flame retardant rigid polyurethane foam with phosphorus–nitrogen intumescent flame retardant[J]. High Performance Polymers,2013,25(7):868-875. doi: 10.1177/0954008313489997
    [14] THIRUMAL M, KHASTGIR D, NANDO G B, et al. Halogen-free flame retardant PUF: Effect of melamine compounds on mechanical, thermal and flame retardant properties[J]. Polymer Degradation and Stability,2010,95(6):1138-1145. doi: 10.1016/j.polymdegradstab.2010.01.035
    [15] WANG C, WU Y C, LI Y C, et al. Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant[J]. Polymers for Advanced Technologies,2018,29(1):668-676. doi: 10.1002/pat.4105
    [16] TANG G, ZHOU L, ZHANG P, et al. Effect of aluminum diethylphosphinate on flame retardant and thermal properties of rigid polyurethane foam composites[J]. Journal of Thermal Analysis and Calorimetry,2020,140(2):625-636. doi: 10.1007/s10973-019-08897-z
    [17] XU F F, WANG B, YANG D, et al. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis[J]. Energy Conversion and Management,2018,171:1106-1115. doi: 10.1016/j.enconman.2018.06.047
    [18] MISHRA R K, MOHANTY K. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential[J]. Bioresource Technology,2020,311:123480.
    [19] WANG J, CAI X F. Kinetics study of thermal oxidative degradation of ABS containing flame retardant components[J]. Journal of Thermal Analysis and Calorimetry,2012,107(2):725-732. doi: 10.1007/s10973-011-1704-5
    [20] LIN H J, HAN L J, DONG, L S. Thermal degradation behavior and gas phase flame-retardant mechanism of polylactide/PCPP blends[J]. Journal of Applied Polymer Science,2014,131(13):378-387.
    [21] SHANG S, YUAN B H, SUN Y R, et al. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology[J]. Journal of Colloid and Interface Science,2019,553:364-371. doi: 10.1016/j.jcis.2019.06.015
    [22] CHEN G Q, YUAN B H, WANG Y, et al. Inhibited combustion of graphene paper by in situ phosphorus doping and its application for fire early-warning sensor[J]. Sensors and Actuators A: Physical,2020,312:112111.
    [23] XU, Z M, DUAN L Q, HOU Y B, et al. The influence of carbon-encapsulated transition metal oxide microparticles on reducing toxic gases release and smoke suppression of rigid polyurethane foam composites[J]. Composites Part A: Applied Science and Manufacturing,2020,131:105815.
    [24] WANG S H, WANG X G, WANG X, et al. Surface coated rigid polyurethane foam with durable flame retardancy and improved mechanical property[J]. Chemical Engineering Journal,2020:385: 123755.
    [25] JIANG Z L, WANG C S, FANG S Y, et al. Durable flame-retardant and antidroplet finishing of polyester fabrics with flexible polysiloxane and phytic acid through layer-by-layer assembly and sol-gel process[J]. Journal of Applied Polymer Science,2018,135(27):46414.
    [26] 袁尧. 反应型磷氮化合物及其阻燃硬质聚氨酯泡沫设计与抑烟减毒的研究[D]. 合肥: 中国科学技术大学, 2019.

    YUAN Y. Design of reactive-type phosphorus and nitrogen-containing compounds and study on the smoke toxicity suppression of rigid polyurethane foam[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
    [27] LI W X, LI S X, CHENG Z, et al. The effect of flame retardant-modified sepiolite nanofibers on thermal degradation and fire retardancy of low-density polyethylene[J]. Journal of Thermal Analysis and Calorimetry,2019,138(2):1011-1019. doi: 10.1007/s10973-019-08162-3
    [28] 李紫璇, 丁克, 郝留成, 等. 特高压气体绝缘金属封闭开关设备用Al2O3/环氧树脂复合材料的非等温固化动力学及蠕变性能[J]. 复合材料学报, 2020, 37(3):562-572.

    LI Z X, DING K, HAO L C, et al. Non-isothermal curing kinetics and creep behavior of Al2O3/epoxy composites for extra-high vlotage gvlotage gas insulated switchgear[J]. Acta Materiae Compositae Sinica,2020,37(3):562-572(in Chinese).
    [29] HOROWITZ H H, METEGER G. A new analysis of thermogravimetric traces[J]. Analytical Chemistry,1963,35(10):1464-1468. doi: 10.1021/ac60203a013
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  1037
  • HTML全文浏览量:  355
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 录用日期:  2020-10-27
  • 网络出版日期:  2020-11-10
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回