留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯纤维增强高延性碱矿渣复合材料的拉压性能及裂缝分布

阚黎黎 庞成凯 王飞 薛佳旭 赵树龙 刘卫东 赵玉静

阚黎黎, 庞成凯, 王飞, 等. 聚乙烯纤维增强高延性碱矿渣复合材料的拉压性能及裂缝分布[J]. 复合材料学报, 2021, 38(12): 4305-4312. doi: 10.13801/j.cnki.fhclxb.20210302.003
引用本文: 阚黎黎, 庞成凯, 王飞, 等. 聚乙烯纤维增强高延性碱矿渣复合材料的拉压性能及裂缝分布[J]. 复合材料学报, 2021, 38(12): 4305-4312. doi: 10.13801/j.cnki.fhclxb.20210302.003
KAN Lili, PANG Chengkai, WANG Fei, et al. Tensile and compressive properties and crack distribution of polyethylene fiber reinforced high ductile alkali-activated slag composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4305-4312. doi: 10.13801/j.cnki.fhclxb.20210302.003
Citation: KAN Lili, PANG Chengkai, WANG Fei, et al. Tensile and compressive properties and crack distribution of polyethylene fiber reinforced high ductile alkali-activated slag composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4305-4312. doi: 10.13801/j.cnki.fhclxb.20210302.003

聚乙烯纤维增强高延性碱矿渣复合材料的拉压性能及裂缝分布

doi: 10.13801/j.cnki.fhclxb.20210302.003
基金项目: 国家自然科学基金(51508329)
详细信息
    通讯作者:

    阚黎黎,博士,副教授,研究方向为高性能土木工程材料 E-mail:kanlili@usst.edu.cn

  • 中图分类号: TU528

Tensile and compressive properties and crack distribution of polyethylene fiber reinforced high ductile alkali-activated slag composites

  • 摘要: 在碱激发作用下,以矿粉为主要原材料,粉煤灰为辅助材料,共同制备聚乙烯(PE)纤维增强高延性碱矿渣复合材料。通过轴向拉、压实验,研究不同养护龄期(1天、3天、7天、28天、56天、120天)下材料的拉压性能,并借助数字图像技术(DIC)对裂缝进行了表征。结果表明:高延性碱矿渣表现出较好的延性,具有早强特征。7天强度值可达极限强度的84%以上(极限拉压强度分别为5.05 MPa、91.24 MPa),拉伸应变可达5.74%,多缝开裂基本饱和;28天后拉压性能趋于稳定(拉压强度、拉伸应变分别保持在6 MPa、100 MPa、6%);DIC数字分析云图直观地描述了裂缝的形成及发展过程,可从一定程度上对开裂破坏方向及位置进行可靠预判。

     

  • 图  1  矿粉、粉煤灰和砂的粒径分布

    Figure  1.  Particle size distribution of slag, fly ash and sand

    图  2  哑铃型试件示意图

    Figure  2.  Sketch of dumbbell-shaped specimen

    图  3  DIC基本原理示意图

    Figure  3.  Schematic diagram of DIC basic principle

    图  4  散斑制作流程

    Figure  4.  Flow chart of making speckle

    图  5  DIC试验装置及试件散斑表面

    Figure  5.  DIC test apparatus and speckle surface of specimen

    图  6  不同龄期下PE纤维增强高延性碱矿渣复合材料的单轴拉伸应力-应变曲线及DIC应变云图

    Figure  6.  Uniaxial tensile stress-strain curves and DIC strain contour maps of PE fiber reinforced alkali-activated slag composites at different ages

    图  7  PE纤维增强高延性碱矿渣拉伸性能与龄期的关系

    Figure  7.  Relationship between tensile properties of PE fiber reinforced alkali-activated slag composites and curing ages

    图  8  早龄期PE纤维增强高延性碱矿渣沿X方向的压缩位移及应变云图

    Figure  8.  Compressive displacement and strain contour maps of PE fiber reinforced high ductile alkali-activated slag composite specimens along X direction at early ages

    表  1  矿粉和粉煤灰的主要化学组成

    Table  1.   Main chemical composition of slag and fly ash wt%

    OxideCaOSiO2Al2O3Fe2O3MgOSO3K2ONa2OTiO2
    Slag 42.6 35.2 10.4 0.51 4.95 2.0 0.40 0.31 0.53
    Fly ash 16.4 35.4 27.8 2.4 0.75 5.66 0.59 0.16 1.55
    下载: 导出CSV

    表  2  聚乙烯(PE)纤维增强高延性碱矿渣复合材料配合比

    Table  2.   Mix design proportion of polyethylene (PE) fiber reinforced high ductile alkali-activated slag composites

    Slag/wt%Fly ash/wt%Sand/wt%Na2SiO3/wt%NaOH/wt%Water/wt%PE fiber/vol%
    48.465.3816.1513.212.9412.922
    下载: 导出CSV

    表  3  不同龄期下PE纤维增强高延性碱矿渣试件裂缝的特性

    Table  3.   Crack characteristics of the PE fiber reinforced alkali-activated slag composite specimens at different ages

    Curing age/dayNumber of crackAverage crack width/μmAverage crack spacing/mm
    1 9±1 229.21±23.62 8.59±0.42
    3 17±2 175.74±29.33 4.78±0.57
    7 29±2 160.81±12.22 2.80±0.16
    28 34±1 147.34±4.33 2.35±0.07
    56 31±1 158.41±9.65 2.58±0.07
    120 33±2 145.20±1.92 2.43±0.12
    下载: 导出CSV

    表  4  PE纤维增强高延性碱矿渣在不同龄期下的抗压强度

    Table  4.   Compressive strength of PE fiber reinforced high ductile alkali-activated slag composites at different ages

    Curing age/day1372856120
    Compressive strength/MPa 69.7±4.8 80.51±2.0 91.24±2.1 100.69±3.7 99.39±4.3 97.6±4.9
    下载: 导出CSV
  • [1] PROVIS J L, PALOMO A, SHI C. Advances in understanding alkali-activated materials[J]. Cement and Concrete Research,2015,78:110-125. doi: 10.1016/j.cemconres.2015.04.013
    [2] 陈硕, 王立久. 活性MgO改性流化床炉底渣-硅灰复合材料的力学性能及产物[J]. 复合材料学报, 2018, 35(5):1288-1297.

    CHEN Shuo, WANG Lijiu. Mechanical properties and reaction products of reactive MgO modified circulating fluidized bed combustion slag-silica fume composites[J]. Acta Materiae Compositae Sinica,2018,35(5):1288-1297(in Chinese).
    [3] LING Y, WANG K. Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites[J]. Composites Part B: Engineering,2019,164:747-757. doi: 10.1016/j.compositesb.2019.01.092
    [4] KOSHY N, DONDORB K. Synthesis and characterization of geopolymers derived from coal gangue, fly ash and red mud[J]. Construction and Building Materials,2019,206:287-296. doi: 10.1016/j.conbuildmat.2019.02.076
    [5] SCRIVENER K L, JOHN V M, GARTNER E M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research,2018,114:2-26. doi: 10.1016/j.cemconres.2018.03.015
    [6] 曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(5):632-642.

    CAO Mingli, XU Ling, ZHANG Cong. Review on micromechanical design, performance and development tendency of engineered cementitious composite[J]. Journal of the Chinese Ceramic Society,2015,43(5):632-642(in Chinese).
    [7] 阚黎黎, 段贝贝, 闫涛. 高延性纤维增强偏高岭土-粉煤灰基地聚合物在不同环境下的自愈合性能[J]. 复合材料学报, 2018, 35(10):2841-2850.

    KAN Lili, DUAN Beibei, YAN Tao. Self-healing characteristics of engineered geopolymer composites incorporating metakaolin and fly ash under different environments[J]. Acta Materiae Compositae Sinica,2018,35(10):2841-2850(in Chinese).
    [8] ZHANG Z G, ZHANG Q, LI V C. Multiple-scale investigations on self-healing induced mechanical property recovery of ECC[J]. Cement and Concrete Composites,2019,103:293-302. doi: 10.1016/j.cemconcomp.2019.05.014
    [9] LI V C. On engineered cementitious composites (ECC)—A review of the material and its applications[J]. Advanced Concrete Technology,2003(3):215-230.
    [10] ZHOU J, QIAN S Z, YE G, et al. Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence[J]. Cement and Concrete Composites,2012,34(3):342-348. doi: 10.1016/j.cemconcomp.2011.11.019
    [11] VICTOR C LI. Tailoring ECC for special attributes: A review[J]. International Journal of Concrete Structures and Materials,2012(6):135-144.
    [12] 林建辉, 余江滔, VICTOR C LI. PVA纤维增强水泥基复合材料热处理后的力学性能[J]. 复合材料学报, 2016, 33(1):116-122.

    LIN Jianhui, YU Jiangtao, VICTOR C LI. Mechanical properties of PVA fiber reinforced cementitious composites after thermal treatment[J]. Acta Materiae Compositae Sinica,2016,33(1):116-122(in Chinese).
    [13] NOWELL D. Application of digital image correlation to the investigation of crack closure following overloads[J]. Procedia Engineering,2010(2):1035-1043.
    [14] 卿龙邦, 曹国瑞, 管俊峰. 基于DIC方法的混凝土允许损伤尺度试验研究[J]. 工程力学, 2019, 36(10):115-121.

    QING Longbang, CAO Guorui, GUAN Junfeng. Experimental investigation of the concrete permissible damage scale based on the digital image correlation method[J]. Engineering Mechanics,2019,36(10):115-121(in Chinese).
    [15] 赵燕茹, 邢永明, 黄建永, 等. 数字图像相关方法在纤维混凝土拉拔试验中的应用[J]. 工程力学, 2010, 27(6):169-175.

    ZHAO Yanru, XING Yongming, HUANG Jianyong, et al. Study on the fiber-reinforced concrete pull-out test using digital image correlation method[J]. Engineering Mechanics,2010,27(6):169-175(in Chinese).
    [16] 赵燕茹, 郝松, 王磊, 等. 基于数字图像相关的钢纤维增强水泥基复合材料的冲击损伤特性[J]. 复合材料学报, 2018, 35(5):1325-1331.

    ZHAO Yanru, HAO Song, WANG Lei, et al. Impact damage characteristics of steel fiber reinforced cement matrix composites based on digital image correlation[J]. Acta Materiae Compositae Sinica,2018,35(5):1325-1331(in Chinese).
    [17] 俞鑫炉, 付应乾, 董新龙, 等. 轴向钢筋增强混凝土一维应力层裂实验研究[J]. 工程力学, 2020, 37(1):80-87.

    YU Xinlu, FU Yingqian, DONG Xinlong, et al. Experimental study on one-dimensional stress spall of unidirectional reinforced concrete[J]. Engineering Mechanics,2020,37(1):80-87(in Chinese).
    [18] KAN L L, SHI R X, ZHAO Y J, et al. Feasibility study on using incineration fly ash from municipal solid waste to develop high ductile alkali-activated composites[J]. Journal of Cleaner Production,2020,254:120168. doi: 10.1016/j.jclepro.2020.120168
    [19] COLLINS F G, SANJAYAN J G. Microcracking and strength development of alkali activated slag concrete[J]. Cement and Concrete Composites,2001,23:345-352. doi: 10.1016/S0958-9465(01)00003-8
    [20] NUNES L C, REIS J M L. Estimation of crack-tip-opening displacement and crack extension of glass fiber reinforced polymer mortars using digital image correlation method[J]. Materials and Design,2012,33(1):248-253.
    [21] MOHAMMED F, AMER B, NEMKUMER B, et al. Tensile performance of eco-friendly ductile geopolymer compo-sites (EDGC) incorporating different micro-fibers[J]. Cement and Concrete Composites,2019,103:183-192. doi: 10.1016/j.cemconcomp.2019.05.004
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  855
  • HTML全文浏览量:  362
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 录用日期:  2021-02-18
  • 网络出版日期:  2021-03-02
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回