留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料防撞梁低速碰撞优化设计

任明伟 洪治国 周玉敬 殷莎 田宇黎 马赛 陈蕴博 范广宏

任明伟, 洪治国, 周玉敬, 等. 复合材料防撞梁低速碰撞优化设计[J]. 复合材料学报, 2022, 39(2): 854-862. doi: 10.13801/j.cnki.fhclxb.20210420.001
引用本文: 任明伟, 洪治国, 周玉敬, 等. 复合材料防撞梁低速碰撞优化设计[J]. 复合材料学报, 2022, 39(2): 854-862. doi: 10.13801/j.cnki.fhclxb.20210420.001
REN Mingwei, HONG Zhiguo, ZHOU Yujing, et al. Low-speed collision optimization design of composite bumper[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 854-862. doi: 10.13801/j.cnki.fhclxb.20210420.001
Citation: REN Mingwei, HONG Zhiguo, ZHOU Yujing, et al. Low-speed collision optimization design of composite bumper[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 854-862. doi: 10.13801/j.cnki.fhclxb.20210420.001

复合材料防撞梁低速碰撞优化设计

doi: 10.13801/j.cnki.fhclxb.20210420.001
基金项目: 高档数控机床与基础制造装备(2018ZX04026-001);国家重点实验室开放基金(SKL2019001);广东省重点领域研发计划(2019B090911003)
详细信息
    通讯作者:

    陈蕴博,院士,博士生导师,研究方向为材料学、材料加工、表面工程及机械构件延寿技术等 E-mail:webmaster@ht.org.cn

  • 中图分类号: TB332

Low-speed collision optimization design of composite bumper

  • 摘要: 复合材料由于其较高的比刚度、比强度而成为重要的轻量化材料,推广其在汽车上的应用可有效缓解当前人类面临的环境污染和能源短缺问题。基于某款汽车铝合金前防撞梁,开展了复合材料替代设计,可实现减重27%,并采用碳纤维湿法模压成型工艺进行制备后,进行了RCAR标准下正面40%重叠碰撞实验;同时,利用有限元软件LS-DYNA构建了复合材料前防撞梁数值模型,验证后基于该模型进一步对吸能盒壁厚、复合材料梁铺层厚度、铺层方式等参数进了探讨,发现吸能盒壁厚对于防撞梁的耐撞性较关键,而引入仿生螺旋铺层设计可进一步提升能量吸收特性。此外,同等质量下的复合材料防撞梁综合性能被证明较金属防撞梁更加优异。

     

  • 图  1  铝合金材质防撞梁的示意图

    Figure  1.  Schematic of aluminium alloy bumper

    图  2  复合材料防撞梁的示意图

    Figure  2.  Schematic of composite bumper

    图  3  复合材料防撞梁的湿法模压成形示意图

    Figure  3.  Schematic diagrams of wet compression molding of composite bumper

    图  4  复合材料防撞梁成品的示意图

    Figure  4.  Schematic of the finished composite bumper

    图  5  复合材料防撞梁与铝合金吸能盒装配示意图

    Figure  5.  Assembly diagram of composite bumper and aluminium alloy energy absorbing box

    图  6  RCAR标准正面40%重叠碰撞示意图

    Figure  6.  Schematic of 40% frontal crash of RCAR standard

    U—40% overlap; B—Vehicle width(front); R—150 mm; F—Test vehicle; A—10°

    图  7  RCAR标准正面40%重叠碰撞前实验图像

    Figure  7.  Experimental photo before the collision of 40% frontal crash of RCAR standard

    图  8  RCAR标准正面40%碰撞后复合材料防撞梁与铝合金吸能盒图像

    Figure  8.  Experimental photos of composite bumper and aluminum alloy energy absorption box after the collision of 40% frontal crash of RCAR standard

    图  9  复合材料防撞梁的RCAR标准正面40%碰撞有限元模型

    Figure  9.  Finite element model of composite bumper for 40% frontal crash of RCAR standard

    图  10  不同时刻复合材料防撞梁模型与实验变形结果对比

    Figure  10.  Comparison of deformation results of composite bumper between models and experiments at different time

    图  11  复合材料防撞梁力-时间曲线模拟与实验对比

    Figure  11.  Comparison of force-time curves of simulation and experiment for composite bumper

    图  12  复合材料防撞梁完整力-时间曲线模拟结果

    Figure  12.  Complete force-time curves of simulation for composite bumper

    图  13  不同吸能盒壁厚的复合材料防撞梁支反力-时间模拟曲线对比

    Figure  13.  Comparison of simulated force-time curves of composite bumpers with different thickness of energy absorption box

    图  14  复合材料防撞梁正面100%重叠碰撞有限元模型

    Figure  14.  Finite element model of composite bumper of 100% frontal collision

    图  15  钢制梁与复合材料梁的支反力-时间模拟结果对比

    Figure  15.  Comparison of simulation force-time curve between steel bumper and composite bumper

    表  1  碰撞器和车身材料参数

    Table  1.   Parameters of impactor and car

    ParameterCollisionCar
    Density ρ/(g·cm−3) 7.85 1.036
    Modulus E/GPa 210 210
    Poisson’s ratio 0.3 0.3
    下载: 导出CSV

    表  2  吸能盒和传感器参数

    Table  2.   Parameters of crash box and sensor

    ParameterCrash boxSensor
    Density ρ/(g·cm−3) 2.70 7.85
    Modulus E/GPa 69 210
    Poisson’s ratio 0.33 0.3
    Yield stress σ/MPa 105 355
    下载: 导出CSV

    表  3  碳纤维增强环氧树脂复合材料的力学性能

    Table  3.   Mechanical properties of carbon fiber reinforced epoxy composites

    ParameterValue
    Density ρ/(g·cm−3) 1.5×10−6
    Longitudinal tensile modulus Ea/GPa 127
    Transverse tensile modulus Eb/GPa 8.41
    In-plane shear modulus Gab/GPa 4.21
    Principal Poisson’s ratio 0.309
    Sub Poisson’s ratio 0.0205
    Longitudinal tensile strength Xt/GPa 2.2
    Longitudinal compressive strength Xc/GPa 1.47
    Transverse tensile strength Yt/GPa 0.049
    Transverse compressive strength Yc/GPa 0.199
    In-plane shear strength Sc/GPa 0.154
    下载: 导出CSV

    表  4  三种铺层数的复合材料防撞梁关键参数仿真结果对比

    Table  4.   Comparison of simulation results of key parameters of composite bumpers with three laying methods

    Number of layerMaximum force/kNMaximum displacement/mmEnergy absorption/JSpecific energy absorption/(J·kg−1)
    12 27.8 78.9 4462 2617
    24 47.9 49.0 5850 2145
    36 92.4 40.1 6732 1795
    下载: 导出CSV

    表  5  四种铺层方式的复合材料防撞梁关键参数仿真结果对比

    Table  5.   Comparison of simulation results of key parameters of composite bumpers with four laying methods

    Stacking modeMaximum force/kNMaximum displacement/mmEnergy absorption/JSpecific energy absorption/(J·kg−1)
    Case I 27.8 78.9 4462 2617
    Case II 26.3 84.6 2597 1523
    Case III 23.7 94.8 3105 1821
    Case IV 39.1 78.1 4573 2682
    Notes: Case I—[45/0/0/0/−45/0/0/−45/0/0/0/45]; Case II—[0]12; Case III—[90]12; Case IV—[0/36/72/−72/−36/0/0/−36/−72/72/36/0].
    下载: 导出CSV

    表  6  钢制梁与复合材料梁的关键参数仿真结果对比

    Table  6.   Comparison of simulation results of key parameters between steel bumper and composite bumper

    MaterialMaximum force/kNMaximum displacement/mmEnergy absorption/JSpecific energy absorption/(J·kg−1)
    Steel25.292.228431667
    Composite27.878.944622617
    下载: 导出CSV
  • [1] 杨旭静, 张振明, 郑娟, 等. 复合材料前防撞梁变截面多工况多目标优化设计[J]. 汽车工程, 2015, 37(10):1130-1137, 1143. doi: 10.3969/j.issn.1000-680X.2015.10.005

    YANG Xujing, ZHANG Zhenming, ZHENG Juan, et al. Multi-condition/multi-object optimization design of the variable cross-section of composite front bumper[J]. Automotive Engineering,2015,37(10):1130-1137, 1143(in Chinese). doi: 10.3969/j.issn.1000-680X.2015.10.005
    [2] 段书用. 面向车身应用的 LGFRP 复合材料制备工艺及力学性能研究[D]. 长沙: 湖南大学, 2016.

    DUAN Shuyong. The research on the preparation technology and mechanical properties of LGFPR composite for application in vechicle body[D]. Changsha: Hunan University, 2016(in Chinese).
    [3] 肖永清. 轻量化材料驱动汽车的未来[J]. 汽车工程师, 2010(12):14-16. doi: 10.3969/j.issn.1674-6546.2010.12.002

    XIAO Yongqing. Lightweight materials guiding the future of automobile[J]. Auto Engineer,2010(12):14-16(in Chinese). doi: 10.3969/j.issn.1674-6546.2010.12.002
    [4] 吴尘瑾, 祖磊, 李书欣, 等. 变刚度复合材料层合板的纤维铺放路径设计及屈曲分析[J]. 玻璃钢/复合材料, 2018(4):5-10.

    WU Chenjin, ZU Lei, LI Shuxin, et al. Design of fiber placement path and bucking analysis of variable stiffness composite laminates[J]. FRP/Composites,2018(4):5-10(in Chinese).
    [5] 刘昌. 复合材料变刚度铺层优化设计方法研究[D]. 太原: 中北大学, 2016.

    LIU Chang. Stacking sequence optimization research of variable stiffness composite laminates[D]. Taiyuan: North University of China, 2016(in Chinese).
    [6] 张宇, 郑升伟. 基于某轿车RCAR低速后碰分析及优化设计[J]. 机械强度, 2016, 38(6):1356-1360.

    ZHANG Yu, ZHEN Shengwei. Analysis and optimization on vehicle low speed back-crash design based on RCAR tests[J]. Journal of Mechanical Strength,2016,38(6):1356-1360(in Chinese).
    [7] 孙晴, 高保才, 陈现岭, 等. 基于RCAR的保险杠低速碰撞的分析与应对措施[J]. 汽车安全与节能学报, 2012, 3(4):332-338. doi: 10.3969/j.issn.1676-8484.2012.04.006

    SUN Qing, GAO Baicai, CHEN Xianling, et al. Analysis and its solution for bumper low-speed structural crash based on RCAR[J]. Journal of Automotive Safety and Energy,2012,3(4):332-338(in Chinese). doi: 10.3969/j.issn.1676-8484.2012.04.006
    [8] 都雪静, 陈占丽. 基于RCAR试验的电动SUV低速保险杠耐撞性研究[J]. 交通科技与经济, 2020, 22(3):35-41.

    DU Xuejing, CHEN Zhanli. Research on crash resistance of electric SUV low speed bumper based on RCAR test[J]. Technology & Economy in Areas of Communication,2020,22(3):35-41(in Chinese).
    [9] 王镇江, 何造, 林广谊, 等. 基于模态分析的汽车塑料保险杠拓扑优化[J]. 塑料, 2017, 46(5):9-12.

    WANG Zhenjiang, HE Zao, LIN Guangyi, et al. Topology optimization of automobile plastic bumper based on modal analysis[J]. Plastics,2017,46(5):9-12(in Chinese).
    [10] 陈静, 唐傲天, 田凯, 等. 碳纤维复合材料防撞梁轻量化设计[J]. 汽车工程, 2020, 42(3):390-395.

    CHEN Jing, TANG Aotian, TIAN Kai, et al. Multi-condition/multi-object optimization design of the variable cross-section of composite front bumper[J]. Automotive Engineering,2020,42(3):390-395(in Chinese).
    [11] 仲伟东, 王东方, 李静. 复合材料防撞梁低速碰撞的研究与多目标优化[J]. 南京工业大学学报(自然科学版), 2019, 41(4):463-471.

    ZHONG Weidong, WANG Dongfang, LI Jing. Research and multi-objective optimization for low speed collision of composite bumper beam[J]. Journal of Nanjing Tech Univesity (Natural Science Edition),2019,41(4):463-471(in Chinese).
    [12] KIM K J, GER K M. Effect of structural variables on automotive body bumper impact beam[J]. International Journal of Automotive Technology,2008,9(6):713-717. doi: 10.1007/s12239-008-0084-8
    [13] ZAREI H R, GER K M. Bending behavior of empty and foam-filled beams: Structural optimization[J]. International Journal of Impact Engineering,2008,35:521-529. doi: 10.1016/j.ijimpeng.2007.05.003
    [14] SHOJAEIFARD M H, ZAREI H R, TALEBITOOTI M M. Bending behavior of empty and form filled aluminum tubes with different cross-section[J]. Acta Mechanica Solida Sinica,2012,25(6):616-626. doi: 10.1016/S0894-9166(12)60057-3
    [15] TANLAK N, SONMEZ F O, SENALTUN M. Shape optimization of bumper beams under high -velocity impact loads[J]. Engineering Structures,2015,95(7):49-60.
    [16] KUMAR S A J, BALA B R. Structural analysis of bumper beam with different alloys[J]. International Journal & Magazine of Engineering, Technology, Management and Research,2018,5(7):6-16.
    [17] YIN S, YANG R, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites[J]. Composites Science and Technology,2021,205:108650.
    [18] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer[J]. Science,2012,336:1275-1280. doi: 10.1126/science.1218764
    [19] GRUNENFELDER L K, SUKSANGPANYA N , SALINAS C, et al. Bio-inspired impact resistant composites[J]. Acta Biomaterialia,2014,10:3997-4008. doi: 10.1016/j.actbio.2014.03.022
    [20] YIN S, CHEN H, YANG R, et al. Tough nature-inspired helicoidal composites with printing-induced voids[J]. Cell Reports Physical Science,2020,1:1-18.
    [21] 全国汽车标准化委员会. 汽车前、后端保护装置: GB 17354—1998[S]. 北京: 中国标准出版社, 1998.

    National Technical Committee of Auto Standardization. Front and rear protective devices for passenger cars: GB 17354—1998[S]. Beijing: China Standards Press, 1998(in Chinese).
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  1022
  • HTML全文浏览量:  592
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 修回日期:  2021-03-29
  • 录用日期:  2021-04-11
  • 网络出版日期:  2021-04-20
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回