留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泡沫填充的S型褶皱复合材料夹芯板低速冲击响应特性

邓云飞 张伟岐 吴华鹏 王轩 杜晶

邓云飞, 张伟岐, 吴华鹏, 等. 泡沫填充的S型褶皱复合材料夹芯板低速冲击响应特性[J]. 复合材料学报, 2021, 38(8): 2605-2615. doi: 10.13801/j.cnki.fhclxb.20201203.001
引用本文: 邓云飞, 张伟岐, 吴华鹏, 等. 泡沫填充的S型褶皱复合材料夹芯板低速冲击响应特性[J]. 复合材料学报, 2021, 38(8): 2605-2615. doi: 10.13801/j.cnki.fhclxb.20201203.001
DENG Yunfei, ZHANG Weiqi, WU Huapeng, et al. Low-speed impact response of the composite sandwich panels with S-type foldcore filled by foam[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2605-2615. doi: 10.13801/j.cnki.fhclxb.20201203.001
Citation: DENG Yunfei, ZHANG Weiqi, WU Huapeng, et al. Low-speed impact response of the composite sandwich panels with S-type foldcore filled by foam[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2605-2615. doi: 10.13801/j.cnki.fhclxb.20201203.001

泡沫填充的S型褶皱复合材料夹芯板低速冲击响应特性

doi: 10.13801/j.cnki.fhclxb.20201203.001
基金项目: 国家自然科学基金(11702317);中央高校基本科研业务费资(3122019092)
详细信息
    通讯作者:

    邓云飞,博士,副教授,硕士生导师,研究方向为复合材料结构设计与性能评价  E-mail:yfdeng@cauc.edu.cn

  • 中图分类号: TB33;TG156

Low-speed impact response of the composite sandwich panels with S-type foldcore filled by foam

  • 摘要: 为了研究泡沫填充褶皱夹芯结构低速冲击响应特性与损伤机制,采用热压法制备了玻璃纤维增强S型褶皱夹芯板,并使用聚氨酯泡沫进行了填充,通过落锤试验机对夹芯板节点与基座两个位置进行了冲击试验。研究表明,冲击位置对泡沫填充褶皱夹芯板的失效模式存在影响。当冲击位置为节点时,夹芯板芯子以凸侧面曲面壁压溃断裂失效为主,泡沫的填充起到了提供力矩的作用。当冲击位置为基座时,夹芯板芯子以凹侧面曲面壁撕裂和凸侧面曲面壁压溃失效为主,夹芯板损伤沿板厚度方向扩展充分,导致冲击载荷均匀化。在相同冲击能量下,节点与基座冲击相比,夹芯板的最大载荷力提高,并且比较稳定。此外,节点载荷峰值产生的冲击位移较低于基座冲击。

     

  • 图  1  V型褶皱芯子及其变异形式

    Figure  1.  V-type foldcore and variation

    图  2  V型褶皱芯子拐角处的应力集中[26]

    Figure  2.  Stress concentration at corner of V-type foldcore[26]

    图  3  正常纤维(左)与弯折纤维(右)[25]

    Figure  3.  Normal fiber (left) and bent fiber (right)[25]

    图  4  S型褶皱夹层结构示意

    Figure  4.  Schematic diagram of sandwich structure with S-type foldcore

    H—Core height; 2m—Width of bond surface; t—Thickness of the material; 2α—Angle of the center of a curved wall; 2θ—Angle formed by two curved surfaces

    图  5  S型褶皱芯子的组成

    Figure  5.  Composition of S-type foldcore

    图  6  玻璃纤维增强环氧树脂复合材料褶皱芯子的制造工艺

    Figure  6.  Manufacturing process of glass fiber reinforced epoxy resin composite foldcore

    图  7  复合材料面板固化方式

    Figure  7.  Curing methods of composite panel

    图  8  褶皱夹芯板泡沫填充方法

    Figure  8.  Foam filling method for sandwich panels with foldcore

    图  9  落锤试验机

    Figure  9.  Drop weight testing machine

    图  10  夹芯板冲击位置

    Figure  10.  Impact position of sandwich panel

    图  11  冲击位置为节点时夹芯板的损伤模式

    Figure  11.  Damage mode of sandwich panel with impact position at node

    图  12  夹芯板顶点处冲击后截面

    Figure  12.  Cross section of sandwich panel after impact at node

    图  13  冲击位置为节点时粘结平台压溃区域示意图

    Figure  13.  Schematic diagram of crushing area of adhesive platform after impact at node

    图  14  节点冲击时夹芯板的载荷-位移曲线

    Figure  14.  Load-displacement curves of sandwich panels for impact at node

    图  15  冲击位置为基座时夹芯板的损伤模式

    Figure  15.  Damage mode of sandwich panel with impact position of pedestal

    图  16  夹芯板基座处冲击后截面

    Figure  16.  Cross section of sandwich panel after impact at pedestal

    图  17  冲击位置为基座处的夹芯板失效机制

    Figure  17.  Failure mechanism of sandwich panel with impact position at pedestal

    图  18  基座冲击时夹芯板的载荷-位移曲线

    Figure  18.  Load-displacement curves of sandwich panels for impact at pedestal

    图  19  夹芯板不同冲击位置的冲击载荷曲线对比

    Figure  19.  Comparison of the impact load curves of foam filled sandwich panels at different impact positions

    图  20  夹芯板最大载荷对应的位移

    Figure  20.  Displacement corresponding to maximum load for the sandwich specimens

    图  21  夹芯板冲击响应参数变化规律

    Figure  21.  Variations of the impact parameters for the sandwich specimens

    表  1  S型褶皱芯子单胞参数

    Table  1.   Parameters of S-type foldcore cell

    H/mmR/mmm/mmt/mmθ/(°)α/(°)
    191021.53060
    下载: 导出CSV

    表  2  夹芯板最大冲击载荷对比

    Table  2.   Comparison of the maximum impact load of sandwich panel

    Impact positionImpact energy/J
    50100150200300
    Node impact maximum load/N 11 313 12 238 12 715 12 202 12 282
    Base impact maximum load/N 4 661 9 156 11 654 12 208 6 808
    下载: 导出CSV
  • [1] ZHU F, LU G. A review of blast and impact of metallic and sandwich structures[J]. Electronic Journal of Structural Engineering,2007,7(1):92-101.
    [2] ZHANG X, XU F, ZANG Y, et al. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact[J]. Compo-site Structures,2020,236:111882. doi: 10.1016/j.compstruct.2020.111882
    [3] YANG J S, ZHANG W M, YANG F, et al. Low velocity impact behavior of carbon fibre composite curved corrugated sandwich shells[J]. Composite Structures,2020,238:112027. doi: 10.1016/j.compstruct.2020.112027
    [4] 蔡林刚, 杜志鹏, 李晓彬, 等. 爆炸冲击波与破片联合作用下泡沫夹芯板的毁伤特性研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(2):316-320.

    CAI Lingang, DU Zhipeng, LI Xiaobin, et al. Study on damage characteristic of foam sandwich panel under combined action of explosion shock wave and fragments[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering),2020,44(2):316-320(in Chinese).
    [5] HEIMBS S, CICHOSZ J, KLAUS M, et al. Sand-wich structures with textile-reinforced composite foldcores under impact loads[J]. Composite structures,2010,92(6):1485-1497. doi: 10.1016/j.compstruct.2009.11.001
    [6] GU Z P, WU X Q, LI Q M, et al. Dynamic compressive behaviour of sandwich panels with lattice truss core filled by shear thickening fluid[J]. International Journal of Impact Engineering,2020,143:130616.
    [7] SILVERBERG J L, EVANS A A, MCLEOD L, et al. Using origami design principles to fold reprogrammable mechanical meta materials[J]. Science,2014,345(6197):647-650. doi: 10.1126/science.1252876
    [8] FELTON S, TOLLEY M, DEMAINE E, et al. A method for building self-folding machines[J]. Science,2014,345(6197):644-646. doi: 10.1126/science.1252610
    [9] MIURA K. Zeta-Core Sandwich-Its Concept and Realization[M]. Institute of Space and Aeronauti-cal Science, University of Tokyo, 1972.
    [10] NGUYEN M Q, JACOMBS S S, THOMSON R S, et al. Simulation of impact on sandwich struc-tures[J]. Composite structures,2005,67(2):217-227. doi: 10.1016/j.compstruct.2004.09.018
    [11] HEIMBS S, MIDDENDORF P, HAMPF C, et al. Aircraft sandwich structures with folded core un-der impact load[C]//Proceedings of the 8th International Conference on Sandwich Structures, ICSS8, Por-to, Portugal, 2008.
    [12] 张延昌, 王自力, 张世联, 等. 基于折叠式夹层板船体结构耐撞性设计[J]. 船舶工程, 2009, 31:1-5. doi: 10.3969/j.issn.1000-6982.2009.03.001

    ZHANG Yanchang, WANG Zili, ZHANG Shilian, et al. Hull structural crashworthy design based on folding sandwich panel[J]. Ship Engineering,2009,31:1-5(in Chinese). doi: 10.3969/j.issn.1000-6982.2009.03.001
    [13] BASILY B B, ELSAYED E A. Dynamic axial crushing of multilayer core structures of folded Chevron patterns[J]. International Journal of Materials and Product Technology,2004,21(1-3):169-185.
    [14] 张培文, 李世强, 王志华, 等. 爆炸载荷作用下具有可折叠芯层夹芯梁的动态响应[J]. 爆炸与冲击, 2018, 38(1):140-147.

    ZHANG Peiwen, LI Shiqiang, WANG Zhihua, et al. Dynamic response of sandwich beam with foldable core under blast loading[J]. Explosion and shock waves,2018,38(1):140-147(in Chinese).
    [15] 王涛. 新型褶皱夹芯结构的设计及其力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Tao. Design and mechanical properties analysis of new folds sandwich structure[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [16] GATTAS J M, YOU Z. The behaviour of curved-crease foldcores under low-velocity impact loads[J]. International Journal of Solids and Structures,2015,53:80-91. doi: 10.1016/j.ijsolstr.2014.10.019
    [17] KILCHERT S, JOHNSON A F, VOGGENREITER H. Modelling the impact behaviour of sandwich structures with folded composite cores[J]. Composites Part A: Applied Science and Manufacturing,2014,57:16-26. doi: 10.1016/j.compositesa.2013.10.023
    [18] ZANG S, ZHOU X, WANG H, et al. Foldcores made of thermoplastic materials: Experimental study and finite element analysis[J]. Thin-Walled Structures,2016,100:170-179. doi: 10.1016/j.tws.2015.12.017
    [19] KLAUS M, REIMERDES H G, GUPTA N K. Experimental and numerical investigations of residual strength after impact of sandwich panels[J]. International Journal of Impact Engineering,2012,44:50-58. doi: 10.1016/j.ijimpeng.2012.01.001
    [20] CONG L X, SUN Y G. Compression response of sandwich structure with M-type CFRP fold-core[C]//Advanced Materials Research. Trans Tech Publications LTD, 2014, 1049: 1071-1074.
    [21] DENG A, JI B, ZHOU X, et al. Geometric design and mechanical properties of foldcores based on the generalized Resch patterns[J]. Thin-Walled Structures,2020,148:106516. doi: 10.1016/j.tws.2019.106516
    [22] DENG A, JI B, ZHOU X. Quasi-static mechanical properties of novel generalized Resch-pattern composite fold-cores[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2020:0954406220940000.
    [23] HARRIS J A, MCSHANE G J. Metallic stacked origami cellular materials: Additive manufacturing, properties, and modelling[J]. International Journal of Solids and Structures,2020,185:448-466.
    [24] STURM R, FISCHER S. Virtual design method for controlled failure in foldcore sandwich panels[J]. Applied Composite Materials,2015,22(6):791-803. doi: 10.1007/s10443-015-9436-5
    [25] 丛立新. 复合材料褶皱夹芯结构的制备及其力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    CONG Lixin. Fabrication and mechanical behavior of composite sandwich structure with folded core[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
    [26] SUN Y G, LI Y X. Prediction and experiment on thecompressive property of the sandwich structure with achevron carbon fibre reinforced composite folded core[J]. Compo-sites Science and Technology,2017,150:95-101. doi: 10.1016/j.compscitech.2017.06.029
    [27] DU Y D, SONG C, XIONG J, et al. Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami[J]. Composites Science and Technology,2019:94-105.
    [28] MUHS F, MIDDENDORF P. Mechanical performance of curved sandwich foldcores[C]. SAMPE Europe 2017-Society for the Advancement of Material and Process Engineering, Stuttgart, 2018.
    [29] ZHANG G, WANG B, MA L, et al. Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels[J]. Composite Structures,2014,108:304-310. doi: 10.1016/j.compstruct.2013.09.040
    [30] YOO S H, CHANG S H, SUTCLIFFE M P F. Compressive characteristics of foam-filled composite egg-box sandwich panels as energy absorbing structures[J]. Composites Part A: Applied Science and Manufacturing,2010,41(3):427-434. doi: 10.1016/j.compositesa.2009.11.010
    [31] CHEN Y, HOU S, FU K, et al. Low-velocity impact response of composite sandwich structures: Modelling and experiment[J]. Composite Structures,2017,168:322-334. doi: 10.1016/j.compstruct.2017.02.064
    [32] HEIMBS S, MIDDENDORF P, HAMPF C, et al. Aircraft sandwich structures with folded core under impact load[C]//Proceedings of the 8th International Conference on Sandwich Structures, ICSS8, Porto, Portugal, 2008.
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  1189
  • HTML全文浏览量:  489
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-17
  • 录用日期:  2020-11-19
  • 网络出版日期:  2020-12-03
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回