留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强环氧树脂复合材料圆管多胞填充结构吸能特性的准静态压缩试验

王雪琴 张震东 马大为 高原 王玺 王尚龙 米莹娟

王雪琴, 张震东, 马大为, 等. 碳纤维增强环氧树脂复合材料圆管多胞填充结构吸能特性的准静态压缩试验[J]. 复合材料学报, 2021, 38(9): 2894-2903. doi: 10.13801/j.cnki.fhclxb.20201201.003
引用本文: 王雪琴, 张震东, 马大为, 等. 碳纤维增强环氧树脂复合材料圆管多胞填充结构吸能特性的准静态压缩试验[J]. 复合材料学报, 2021, 38(9): 2894-2903. doi: 10.13801/j.cnki.fhclxb.20201201.003
WANG Xueqin, ZHANG Zhendong, MA Dawei, et al. Quasi-static compression experimental study on energy absorption characteristics of multicellular structures filled with carbon fiber reinforced epoxy composite tubes[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2894-2903. doi: 10.13801/j.cnki.fhclxb.20201201.003
Citation: WANG Xueqin, ZHANG Zhendong, MA Dawei, et al. Quasi-static compression experimental study on energy absorption characteristics of multicellular structures filled with carbon fiber reinforced epoxy composite tubes[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2894-2903. doi: 10.13801/j.cnki.fhclxb.20201201.003

碳纤维增强环氧树脂复合材料圆管多胞填充结构吸能特性的准静态压缩试验

doi: 10.13801/j.cnki.fhclxb.20201201.003
基金项目: 国家自然科学基金(11902160)
详细信息
    通讯作者:

    张震东,博士研究生,讲师,研究方向为复合材料多胞结构耗能特性与破坏机理  E-mail:zzd1157@163.com

  • 中图分类号: TB332

Quasi-static compression experimental study on energy absorption characteristics of multicellular structures filled with carbon fiber reinforced epoxy composite tubes

  • 摘要: 针对现有研究对复合材料多胞结构吸能特性研究的不足,提出了一种由多根小尺寸的单根碳纤维增强环氧树脂复合材料圆管(Single CFRP tube,SCT)填充进大尺寸碳管组成的多胞填充结构(Multicellular filling structure,MFS),并分别对SCT和MFS进行了单次全行程加载和多次分段加载的准静态压缩,分析了其压缩破坏模式和吸能特性。研究结果表明:MFS最外侧碳管破坏模式与SCT破坏形式相似,且单次全行程压缩与多次分段压缩的破坏模式没有明显区别,但MFS最外侧碳管由于内部碳管及碎屑的挤压呈现出明显的径向变形;相对于单次全行程压缩过程,SCT及MFS多次分段压缩时的总耗能量更多;本次研究的SCT试件最大比吸能为86.0 J/g,最小比吸能为59.3 J/g,然而由于MFS最外侧管件的比吸能低,导致其比吸能在69.8~75.9 J/g之间,小于单管根碳管的最大比吸能,但进一步研究可知,合适的外部约束形式和内部碳管数量可使MFS比吸能高于SCT的最大比吸能。

     

  • 图  1  实验设备及试件

    Figure  1.  Experimental equipment and specimens

    图  2  SCT5试件三次压缩过程及破坏模式

    Figure  2.  Three times compression process and failure mode of SCT5 specimen

    图  3  压缩后MFS1试件外侧碳管中面变形

    Figure  3.  Deformation of the middle surface of outer CFRP tube of the compressed MFS1 specimen

    图  4  各SCT试件单次全行程压缩载荷-位移曲线

    Figure  4.  Full stroke compression load-displacement curves of SCT specimens

    图  5  各SCT试件单次全行程平均压缩载荷

    Figure  5.  Full stoke compression load of SCT specimens

    图  6  SCT试件单次全行程及多次压缩载荷-位移曲线

    Figure  6.  Full stoke and multiple compression load-displacement curves of SCT specimens

    图  7  MFS试件单次全行程压缩载荷-位移曲线

    Figure  7.  Full stroke compression load-displacement curves of MFS specimens

    图  8  MFS试件单次全行程平均压缩载荷

    Figure  8.  Full stroke average compression load of each MFS specimen

    图  9  MFS试件单次及多次压缩载荷-位移曲线

    Figure  9.  Full stroke and multiple compression load-displacement curves of MFS specimens

    图  10  各SCT试件能量-位移曲线

    Figure  10.  Energy-displacement curves of SCT specimens

    图  11  各MFS试件能量-位移曲线

    Figure  11.  Energy-displacement curve of each MFS specimen

    图  12  各SCT及MFS试件的比吸能

    Figure  12.  Specific energy absorption of SCT and MFS specimens

    图  13  各SCT试件多次分段及单次全行程加载耗能对比

    Figure  13.  Energy absorption comparison of multiple and full stroke compression of SCT specimens

    图  14  各MFS试件多次分段及单次全行程加载耗能对比

    Figure  14.  Energy absorption comparison of multiple and full stroke compression of MFS specimens

    表  1  试件尺寸、质量及组成

    Table  1.   Dimension、mass and constitute of specimens

    Specimen numberDo/mmDi/mmH/mmM/gConstitute
    SCT1 18.5 16.7 40 3.58 -
    SCT2 20.7 18.8 40 4.24 -
    SCT3 23.2 21 40 5.50 -
    SCT4 25 23 40 5.43 -
    SCT5 52 50 40 11.54 -
    MFS1 52 - 40 22.39 1 SCT5+2 SCT4
    MFS2 52 - 40 28.03 1 SCT5+3 SCT3
    MFS3 52 - 40 28.51 1 SCT5+4 SCT2
    MFS4 52 - 40 29.45 1 SCT5+5 SCT1
    Notes:Do—Outer diameter; Di—Inner diameter; H—Height; M—Mass.
    下载: 导出CSV

    表  2  SCT试件的单次全行程准静态压缩过程及破坏模式

    Table  2.   Quasi-static full stoke compression process and failure modes of SCT specimens

    Specimen numberFull stoke compression progressFailure mode after compression progress
    Front sideReverse side
    SCT1
    SCT2
    SCT3
    SCT4
    SCT5
    下载: 导出CSV

    表  3  MFS试件的单次全行程准静态压缩过程及破坏模式

    Table  3.   Quasi-static full stroke compression process and failure modes of MFS specimens

    Specimen numberFull stroke compression progressFailure mode after compression progress
    Front sideReverse side
    MFS1
    MFS2
    MFS3
    MFS4
    下载: 导出CSV
  • [1] REUTER Corin, TRÖSTER Thomas. Crashworthiness and numerical simulation of hybrid aluminium-CFRP tubes under axial impact[J]. Thin-Walled Structures,2017,117:1-9. doi: 10.1016/j.tws.2017.03.034
    [2] OTHMAN A, ABDULLAH S, ARIFFIN A K, et al. Investigating the quasi-static axial crushing behavior of polymeric foam-filled composite pultrusion square tubes[J]. Materials and Design,2014,63:446-459. doi: 10.1016/j.matdes.2014.06.020
    [3] YAN Libo, CHOUW Nawawi, JAYARAMAN Krishnan, et al. Effect of triggering and polyurethane foam-filler on axial crushing of natural flax/epoxy composite tubes[J]. Materials and Design,2014,56:528-541. doi: 10.1016/j.matdes.2013.11.068
    [4] ZHOU J, GUAN Z, CANTWELL W J , et al. The energy-absorbing behaviour of composite tube-reinforced foams[J]. Composites Part B: Engineering,2018,139:227-237. doi: 10.1016/j.compositesb.2017.11.066
    [5] NIKNEJAD Abbas, ASSAEE Hassan, ELAHI Seyed Ali, et al. Flattening process of empty and polyurethane foam-filled E-glass/vinylester composite tubes–An experimental study[J]. Composite Structures,2013,100:479-492. doi: 10.1016/j.compstruct.2013.01.009
    [6] GUADES Ernesto, ARAVINTHAN Thiru, MNANLO Allan, et al. Damage modelling of repeatedly impacted square fibre-reinforced polymercomposite tube[J]. Materials and Design,2013,47:687-697. doi: 10.1016/j.matdes.2012.12.051
    [7] 马岩, 阳玉球. 圆-方异形截面复合材料管件物能量吸收机制[J]. 复合材料学报, 2015, 32(1):243-249.

    MA Yan, YANG Yuqiu. Energy absorption mechanism of composite pipe fittings with circular-square cross section[J]. Acta Materiae Compositae Sinica,2015,32(1):243-249(in Chinese).
    [8] ZHU Guohua, SUN Guangyong, LI Guangyao, et al. Modeling for CFRP structures subjected to quasi-static crushing[J]. Composite Structures,2018,184:41-55. doi: 10.1016/j.compstruct.2017.09.001
    [9] 周昊, 郭锐, 刘荣忠等. 碳纤维增强聚合物基复合材料方形蜂窝夹层结构水下爆炸动态响应数值模拟[J]. 复合材料学报, 2019, 36(5):1226-1234.

    ZHOU Hao, GUO Rui, LIU Rongzhong, et al. Simulation on dynamic responses of carbon fiber reinfoeced polymer composite sandwich plates with square honeycomb cores subjected to water blast[J]. Acta Materiae Compositae Sinica,2019,36(5):1226-1234(in Chinese).
    [10] ZHOU Hao, LIU Tao, GUO Rui, et al. Numerical investigation on water blast Response of freestanding carbon fiber reinforced composite sandwich plates with square honeycomb cores[J]. Applied Composite Materials,2019,26:605-625.
    [11] 李喆, 孙凌玉. 复合材料薄壁管冲击断裂分析与吸能特性优化[J]. 复合材料学报, 2011, 28(4):212-218.

    LI Zhe, SUN Lingyu. Impact fracture analysis and energy absorption characteristic optimization of composite thin-walled pipe[J]. Acta Materiae Compositae Sinica,2011,28(4):212-218(in Chinese).
    [12] KALHOR R, AKBARSHAHI H, CASE S W, et al. Numerical modeling of the effects of FRP thickness and stacking sequence on energy absorptionof metal–FRP square tubes[J]. Composite Structures,2016,147:231-246. doi: 10.1016/j.compstruct.2016.03.038
    [13] 李晓南, 牟浩蕾, 周建, 等. 复合材料增强铝方管耐撞性数值模拟[J]. 航空材料学报, 2016, 32(2):56-64. doi: 10.11868/j.issn.1005-5053.2016.2.010

    LI Xiaonan, MOU Haolei, ZHOU Jian, et al. Numerical simulation of impact resistance of aluminum square tube reinforced by composite material[J]. Journal of Aeronautical Materials,2016,32(2):56-64(in Chinese). doi: 10.11868/j.issn.1005-5053.2016.2.010
    [14] ALIA R A, CANTWELL W J, LANGDON G S, et al. The energy-absorbing characteristics of composite tube-reinforced foam structures[J]. Composites, Part B: Engineering,2014,61:127-135. doi: 10.1016/j.compositesb.2014.01.018
    [15] HUSSEIN Rafea Dakhil, RUAN Dong, LU Guoxing, et al. Axial crushing behaviour of honeycomb-filled square carbon fibre reinforced plastic (CFRP) tubes[J]. Composite Structures,2016,140:166-179. doi: 10.1016/j.compstruct.2015.12.064
    [16] SUN Guangyong, LI Shunfeng, LIU Qiang, et al. Experimental study on crashworthiness of empty/aluminum foam/honeycomb-filled CFRP tubes[J]. Composite Structures,2016,152:969-993. doi: 10.1016/j.compstruct.2016.06.019
    [17] LIU Qiang, MA Jingbo, HE Zhaoheng, et al. Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes[J]. Composites Part B: Engineering,2017,121:134-144. doi: 10.1016/j.compositesb.2017.03.034
    [18] ANTALI A A, UMER R, ZHOU J, et al. The energy-absorbing properties of composite tube-reinforced aluminum honeycomb[J]. Composite Structures,2017,176:630-639. doi: 10.1016/j.compstruct.2017.05.063
    [19] ZHANG Zheyi, SUN Wei, ZHAO Yongsheng, et al. Crashworthiness of different composite tubes by experiments and simulations Composites[J]. Composites Part B: Engineering,2018,143:86-95. doi: 10.1016/j.compositesb.2018.01.021
    [20] WANG Zhonggang, LIU Jiefu. Mechanical performance of honeycomb filled with circular CFRP tubes[J]. Composites Part B: Engineering,2018,135:232-241. doi: 10.1016/j.compositesb.2017.09.048
    [21] 张依睿, 魏洋, 柏佳文, 等. 纤维增强聚合物复合材料-钢复合圆管约束混凝土轴压性能预测模型[J]. 复合材料学报, 2019, 36(10):2478-2485.

    ZHANG Yirui, WEI Yang, BAI Jiawen, et al. Models for predicting axial compression bahavior of fiber reinforced polymer-steel composite circular tube confined concrete[J]. Acta Materiae Compositae Sinica,2019,36(10):2478-2485(in Chinese).
    [22] 周星驰, 唐振刚, 周徐斌, 等. CFRP 圆形胞元蜂窝芯层面外剪切模量[J]. 复合材料学报, 2018, 35(10):2777-2785.

    ZHOU Xingchi, TANG Zhengang, ZHOU Xubin, et al. External shear modulus of CFRP circular cell honeycomb[J]. Acta Materiae Compositae Sinica,2018,35(10):2777-2785(in Chinese).
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1003
  • HTML全文浏览量:  430
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 修回日期:  2020-11-16
  • 录用日期:  2020-11-19
  • 网络出版日期:  2020-12-01
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回