留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹基碳纤维/MoS2锂离子电池负极材料

岳红伟 陈淑君 吴培成 铁伟伟 朱聪旭 谢文合

岳红伟, 陈淑君, 吴培成, 等. 竹基碳纤维/MoS2锂离子电池负极材料[J]. 复合材料学报, 2021, 38(11): 3578-3585. doi: 10.13801/j.cnki.fhclxb.20210129.003
引用本文: 岳红伟, 陈淑君, 吴培成, 等. 竹基碳纤维/MoS2锂离子电池负极材料[J]. 复合材料学报, 2021, 38(11): 3578-3585. doi: 10.13801/j.cnki.fhclxb.20210129.003
YUE Hongwei, CHEN Shujun, WU Peicheng, et al. Bamboo-based carbon fibers/MoS2 composite as an anode material for lithium ion batteries[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3578-3585. doi: 10.13801/j.cnki.fhclxb.20210129.003
Citation: YUE Hongwei, CHEN Shujun, WU Peicheng, et al. Bamboo-based carbon fibers/MoS2 composite as an anode material for lithium ion batteries[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3578-3585. doi: 10.13801/j.cnki.fhclxb.20210129.003

竹基碳纤维/MoS2锂离子电池负极材料

doi: 10.13801/j.cnki.fhclxb.20210129.003
基金项目: 国家自然科学基金 (11804289)
详细信息
    通讯作者:

    岳红伟,博士,副教授,研究方向为新能源材料与器件 E-mail:yuehw207@163.com

  • 中图分类号: TM912;TB383.1

Bamboo-based carbon fibers/MoS2 composite as an anode material for lithium ion batteries

  • 摘要: 随着电子产品、电动汽车以及智能电网的快速发展,不仅需要锂离子电池(LIBs)具有优异的储锂性能,而且要求电极材料成本低廉、资源丰富和绿色环保。基于碳负极材料的优点,将废弃的一次性竹筷,在碱性溶液中经过可控的热处理,利用竹子中丰富的天然纤维素,从而获得尺寸均匀的碳纤维(CFs)材料。相比于石墨电极,竹基CFs作为LIBs的负极材料时表现出优异的电化学性能。为进一步提高其储锂性能,以CFs为骨架,通过水热法在其表面制备了一层二硫化钼(MoS2)纳米花,形成核壳结构的CFs/MoS2复合电极材料。电化学测试结果表明,CFs电极在200 mA/g的电流密度下循环500次,放电比容量仍有381.1 mA·h/g;CFs/MoS2复合材料在1000 mA/g的大电流密度下经过1000次循环,仍保持有843 mA·h/g的放电比容量。

     

  • 图  1  取自竹子的碳纤维(CFs)的微观形貌SEM图像

    Figure  1.  SEM images of carbon fibers (CFs) from bamboo

    图  2  取自竹子的CFs的XRD谱(a)和Raman图谱(b)

    Figure  2.  XRD pattern (a) and Raman spectrum (b) of CFs from bamboo

    图  3  CFs/MoS2复合材料的SEM图像((a)~(c))和TEM图像(d)

    Figure  3.  SEM images ((a)-(c)) and TEM image (d) of the CFs/MoS2 composite

    图  4  CFs/MoS2复合材料的XRD图谱(a)和 TGA曲线(b)

    Figure  4.  XRD pattern (a) and TGA curve (b) of the CFs/MoS2 composite

    图  5  CFs电极的前五次循环伏安曲线

    Figure  5.  First five CV profiles of CFs electrode

    图  6  CFs电极在不同电流密度下的循环曲线

    Figure  6.  Cycle performances of CFs electrodes at different current densities

    图  7  CFs/MoS2复合材料的循环伏安曲线

    Figure  7.  CV curve of CFs/MoS2 composite at a scanning rate of 0.1 mV/s between 0.02 V and 3.0 V

    图  8  CFs/MoS2复合材料和纯MoS2在200 mA/g电流密度下的循环性能(a)和1000 mA/g电流密度下长寿命循环(b)

    Figure  8.  (a) Cycling performance of the CFs/MoS2 composite and pure MoS2 performed at 200 mA/g; (b) Long-term cyclic performance of the CFs/MoS2 electrode at a current density of 1000 mA/g

    图  9  CFs/MoS2电极的倍率循环图

    Figure  9.  Rate performance of the CFs/MoS2 electrode at various current densities

    图  10  CFs/MoS2电极在200 mA/g电流密度下经过500次循环后的SEM图像

    Figure  10.  SEM image of the CFs/ MoS2 electrode after 500 cycles at a current density of 200 mA/g

  • [1] DENG Liying, LI Wangyang, LI Hongnan, et al. A hierarchical copper oxide–germanium hybrid film for high areal capacity lithium ion batteries[J]. Frontiers in Chemistry,2020,7:869. doi: 10.3389/fchem.2019.00869
    [2] ZHAGN Yahui, LIU Ronghui, ZHAO Lijia, et al. A large area mesh-like MoS2 with an expanded interlayer distance synthesized by one-pot method and lithium storage performance[J]. Journal of Electroanalytical Chemistry,2020,873:114428. doi: 10.1016/j.jelechem.2020.114428
    [3] HUANG Bin, PAN Zhefei, SU Xiangyu, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources,2018,399:274-286. doi: 10.1016/j.jpowsour.2018.07.116
    [4] 陈淑君, 岳红伟, 柴续, 等. 石墨烯桥联碳-聚乙二醇包覆的Si纳米颗粒Li离子电池复合负极材料[J]. 复合材料学报, 2020, 37(4):978-984.

    CHEN Shujun, YUE Hongwei, CHAI Xu, et al. Graphene bridged carbon-polyethylene glycol-coated Si nanoparticle as anodematerial for lithium ion[J]. Acta Materiae Compositae Sinica,2020,37(4):978-984(in Chinese).
    [5] BAI Weicheng, KE Jian. The preparation of biomass carbon materials and its energy storage research[J]. Ionics,2019,25:2543-2548. doi: 10.1007/s11581-018-2777-y
    [6] LI Yi, HUANG Yan, SONG Kexian, et al. Rice husk lignin-derived porous carbon anode material for lithium-ion batteries[J]. ChemistrySelect,2019,4:4178-4184. doi: 10.1002/slct.201900401
    [7] LI Yi, LI Chun, QI Hui, et al. Mesoporous activated carbon from corn stalk core for lithium ion batteries[J]. Chemical Physics,2018,506:10-16. doi: 10.1016/j.chemphys.2018.03.027
    [8] XIANG Jianyong, LV Weiming, MU Congpu, et al. Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life[J]. Journal of Alloys and Compounds,2017,701:870-874. doi: 10.1016/j.jallcom.2017.01.206
    [9] LI Ruizi, HUANG Jianfeng, REN Jiawen, et al. A sandwich-like porous hard carbon/graphene hybrid derived from rapeseed shuck for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds,2020,818:152849. doi: 10.1016/j.jallcom.2019.152849
    [10] TAN Muchu, Zhang Weihua, Fan Changling, et al. Boric acid-catalyzed hard carbon microfiber derived from cotton as a high-performance anode for lithium-ion batteries[J]. Energy Technology, 2019, 7(3): 1801164.
    [11] WANG Jie, ZHANG Jian, YU Yang, et al. Synthesis of Si/C composites derived from directly-carbonized reed plants as high-performance anode for lithium ion batteries[J]. Journal of Forestry Engineering,2019,4(5):84-91.
    [12] YUE Hongwei, LI Fei, YANG Zhibo, et al. Facile preparation of Mn3O4-coated carbon nanofibers on copper foam as a high-capacity and long-life anode for lithium-ion batteries[J]. Journal of Materials Chemistry A,2014,2(41):17352-17358. doi: 10.1039/C4TA04095C
    [13] CHEN Biao, MENG Yuhuang, HE Fang, et al. Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries[J]. Nano Energy. 2017, 41: 154-163.
    [14] LIU Xizheng, WANG Yahui, YANG Yijun, et al. A MoS2/carbon hybrid anode for high-performance Li-ion batteries at low temperature[J]. Nano Energy,2020,70:104550. doi: 10.1016/j.nanoen.2020.104550
    [15] YUAN Jing, ZHU Jiawei, WANG Ronghua, et al. 3D few-layered MoS2/graphene hybrid aerogels on carbon fiber papers: A free-standing electrode for high-performance lithium/sodium-ion batteries[J]. Chemical Engineering Journal,2020,398:125592. doi: 10.1016/j.cej.2020.125592
    [16] WU Chenghao, OU Jianzhen, HE Fengyi, et al. Three-dimensional MoS2/Carbon sandwiched architecture for boosted lithium storage capability[J]. Nano Energy,2019,65:104061. doi: 10.1016/j.nanoen.2019.104061
    [17] LIU Xingang, WANG Qingfu, ZHANG Jihai, et al. One-step preparation of MoS2/Graphene nanosheets via solid-state pan-milling for high rate lithium-ion batteries[J]. Industrial & Engineering Chemistry Research,2020,59(37):16240-16248.
    [18] YUE Hongwei, LI Fei, YANG Zhibo, et al. Nitrogen-doped carbon nanofibers as anode material for high-capacity and binder-free lithium ion battery[J]. Materials Letters,2014,120:39-42. doi: 10.1016/j.matlet.2014.01.049
    [19] JIANG Jian, LUO Jiangshan, ZHU Jianhui, et al. Diffusion-controlled evolution of core–shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries[J]. Nanoscale,2013,5(17):8105-8113. doi: 10.1039/c3nr01786a
    [20] TENHAEFF W E, RIOS O, MORE K, et al. Highly robust lithium ion battery anodes from lignin: an abundant, renewable, and low-cost material[J]. Advanced Functional Materials,2014,24(1):86-94. doi: 10.1002/adfm.201301420
    [21] POL V G, THACKERAY M M. Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: Evaluation as anodes in lithium electrochemical cells[J]. Energy & Environmental Science,2011,4(5):1904-1912.
    [22] LIU Hongdong, LIN Ye, ZHANG Lei. Hierarchical porous MoS2/C nanospheres self-assembled by nanosheets with high electrochemical energy storage performance[J]. Nanoscale Research Letters,2020,15(1):199. doi: 10.1186/s11671-020-03427-5
    [23] KONG Huabin, LV Chade, YAN Chunshuang, et al. Engineering mesoporous single crystals Co-doped Fe2O3 for high-performance lithium ion batteries[J]. Inorganic Chemistry,2017,56(14):7642-7649. doi: 10.1021/acs.inorgchem.7b00008
    [24] SUN Hu, XU Jialu, HUANG Jingdong, et al. Facile synthesis of hetero-structured few-layer MoS2-coated MoO2 as superior anode materials of lithium ion batteries[J]. Journal of Alloys and Compounds,2021,851:156726. doi: 10.1016/j.jallcom.2020.156726
    [25] ZHANG Chuanling, JIANG Zhihao, LU Bingrong, et al. MoS2 nanoplates assembled on electrospun polyacrylonitrile-metal organic framework-derived carbon fibers for lithium storage[J]. Nano Energy,2019,61:104-110. doi: 10.1016/j.nanoen.2019.04.045
  • 加载中
图(10)
计量
  • 文章访问数:  1109
  • HTML全文浏览量:  473
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 录用日期:  2021-01-25
  • 网络出版日期:  2021-01-29
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回