留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热法制备高反射率TiO2壳层中空玻璃微球

杨威 周广伟 王琨 程珏 张军营

杨威, 周广伟, 王琨, 等. 水热法制备高反射率TiO2壳层中空玻璃微球[J]. 复合材料学报, 2021, 38(10): 3514-3521. doi: 10.13801/j.cnki.fhclxb.20210105.001
引用本文: 杨威, 周广伟, 王琨, 等. 水热法制备高反射率TiO2壳层中空玻璃微球[J]. 复合材料学报, 2021, 38(10): 3514-3521. doi: 10.13801/j.cnki.fhclxb.20210105.001
YANG Wei, ZHOU Guangwei, WANG Kun, et al. Preparation of TiO2 shelled hollow glass microspheres with high reflectivity by hydrothermal method[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3514-3521. doi: 10.13801/j.cnki.fhclxb.20210105.001
Citation: YANG Wei, ZHOU Guangwei, WANG Kun, et al. Preparation of TiO2 shelled hollow glass microspheres with high reflectivity by hydrothermal method[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3514-3521. doi: 10.13801/j.cnki.fhclxb.20210105.001

水热法制备高反射率TiO2壳层中空玻璃微球

doi: 10.13801/j.cnki.fhclxb.20210105.001
基金项目: 先进输电技术国家重点实验室开放基金项目(GEIRI-SKL-2019-003)
详细信息
    通讯作者:

    程珏,博士,教授,博士生导师,研究方向为高性能/功能热固性基体树脂结构设计/合成及其在胶粘剂和复合材料基体树脂中的应用 E-mail:chengjue@mail.buct.edu.cn

  • 中图分类号: TB34

Preparation of TiO2 shelled hollow glass microspheres with high reflectivity by hydrothermal method

  • 摘要: 以钛酸四丁酯、盐酸、去离子水、中空玻璃微球(HGM)为原料,乙醇为溶剂,采用水热合成法制备了高反射率的锐钛矿型TiO2壳层HGM(HGM@TiO2)。采用SEM、EDS、FTIR、XRD、UV-VIS-NIR、导热系数仪研究了钛酸四丁酯用量对微球的表面形貌、表面化学成分、物相结构、反射性能、导热系数的影响。结果表明:锐钛矿型TiO2成功包覆于HGM表面,包覆形貌完整且均匀,并且包覆层厚度随着钛源用量的增加而变厚;与原始HGM相比,HGM@TiO2的导热系数有小幅上升,最大上升幅度仅为0.007 W/(m·K),证明TiO2的包覆对HGM的隔热性能的影响不大;包覆后的HGM的光谱反射率在可见光波段和近红外波段的反射率得到大幅提升,最大提升幅度为13%,HGM@TiO2的最高反射率达到90%以上。

     

  • 图  1  KH550-HGM和HGM@TiO2的制备工艺流程图

    Figure  1.  Preparation process of KH550-HGM and HGM@TiO2

    图  2  HGM、KH550-HGM、HGM@TiO2的FTIR图谱 (a) ;局部HGM@TiO2的FTIR图谱(650~750 cm−1波段) (b)

    Figure  2.  FTIR spectra of original HGM, HGM after treatment with KH550 and HGM@TiO2 (a) ; FTIR spectrum of partial HGM@TiO2 (650-750 cm−1 band) (b)

    图  3  HGM@TiO2微球的SEM图像(高倍放大)

    Figure  3.  SEM images of HGM@TiO2 (High magnification)((a) Original HGM; (b)HGM@TiO2-1; (c) HGM@TiO2-2; (d) HGM@TiO2-3; (e) HGM@TiO2-4; (f) HGM@TiO2-5; (g) HGM@TiO2-6; (h) Cross section of HGM@TiO2-2 wall)

    图  4  HGM@TiO2微球SEM图像(低倍放大)

    Figure  4.  SEM images of HGM@TiO2 (Low magnification) ((a) Original HGM; (b) HGM@TiO2-1; (c) HGM@TiO2-2; (d) HGM@TiO2-3; (e) HGM@TiO2-4; (f) HGM@TiO2-5; (g) HGM@TiO2-6)

    图  5  HGM和HGM@TiO2-3的EDS图谱

    Figure  5.  EDS spectra of HGM and HGM@TiO2-3

    图  6  HGM@TiO2的XRD图谱

    Figure  6.  XRD patterns of HGM@TiO2

    图  7  HGM和HGM@TiO2的光谱反射率曲线

    Figure  7.  Spectral reflectance curve of HGM@TiO2 and HGM

    图  8  HGM和HGM@TiO2的导热系数

    Figure  8.  Thermal conductivity of HGM and HGM@TiO2

    表  1  中空玻璃微球(HGM)的基础参数

    Table  1.   Basic parameters of hollow glass microsphere (HGM)

    ParemeterMedian particle size/μmTrue density/(g·cm−3)Compressive strength/psiWall thickness/μm
    Value 55 0.2 500 0.69
    下载: 导出CSV

    表  2  TiO2壳层HGM(HGM@TiO2)的配方

    Table  2.   Formula of TiO2 shell HGM (HGM@TiO2)

    SampleKH550-HGM/gTetrabutyl titanate/gMass ratio/%
    HGM@TiO2-1 0.25 0.125 50
    HGM@TiO2-2 0.25 0.25 100
    HGM@TiO2-3 0.25 0.375 150
    HGM@TiO2-4 0.25 0.5 200
    HGM@TiO2-5 0.25 0.625 250
    HGM@TiO2-6 0.25 0.75 300
    下载: 导出CSV

    表  3  包覆层厚度与钛酸四丁酯用量的关系

    Table  3.   Relationship between the thickness of the coating layer and the amount of tetrabutyl titanate

    SampleTiO2 coating thickness/nm
    HGM@TiO2-1
    HGM@TiO2-2 83
    HGM@TiO2-3 194
    HGM@TiO2-4 210
    HGM@TiO2-5 223
    HGM@TiO2-6 238
    下载: 导出CSV
  • [1] HU Y, MEI R, AN Z, et al. Silicon rubber/hollow glass microsphere composites: Influence of broken hollow glass microsphere on mechanical and thermal insulation property[J]. Composites Science and Technology,2013,79:64-69.
    [2] RUCKDESCHEL P, PHILIPP A, RETSCH M. Understanding thermal insulation in porous, particulate materials[J]. Advanced Functional Materials,2017,27(38):1702256-1702267. doi: 10.1002/adfm.201702256
    [3] DONG X, WANG M, TAO X, et al. Properties of heat resistant hollow glass microsphere/phosphate buoyancy materials with different coatings[J]. Ceramics International,2019,46(1):415-420.
    [4] SUN C, PANG H, XUAN S, et al. Glass microspheres strengthened magnetorheological plastomers for sound insulation[J]. Materials Letters,2019,256:126611-126615.
    [5] REN S, LIU J, GUO A, et al. Mechanical properties and thermal conductivity of a temperature resistance hollow glass microspheres/borosilicate glass buoyance material[J]. Materials Science and Engineering: A,2016,674:604-614. doi: 10.1016/j.msea.2016.08.014
    [6] LI B, YUAN J, AN Z, et al. Effect of microstructure and physical parameters of hollow glass microsphere on insulation performance[J]. Materials Letters,2011,65(12):1992-1994. doi: 10.1016/j.matlet.2011.03.062
    [7] CUEVAS J C, GARCIA V, FRANCISCO J. Radiative heat transfer[J]. ACS Photonics,2018,5(10):3896-3915.
    [8] HU F, WU S Y, SUN Y G. Hollow-structured materials for thermal insulation.[J]. Advanced materials (Deerfield Beach, Fla.),2019,31(38):1801001-1801007.
    [9] HU Y, ZHONG H, WANG Y H, et al. Development of an antimony doped tin oxide/TiO2 double-layers coated HGM: A high reflectivity and low transmittance building thermal conservation material[J]. Energy Procedia,2017,105:4128-4132. doi: 10.1016/j.egypro.2017.03.876
    [10] MORALES-LUNA G, CONTRERAS-TELLO H, GARXIA-VALENZUELA A, et al. Experimental test of reflectivity formulas for turbid colloids: Beyond the fresnel reflection amplitudes[J]. The Journal of Physical Chemistry B,2016,120(3):583-595. doi: 10.1021/acs.jpcb.5b10814
    [11] YUAN J, AN Z, LI B, et al. Facile aqueous synthesis and thermal insulating properties of low-density glass/TiO2 core/shell composite hollow spheres[J]. Particuology, 2012, 10(4):475-479.
    [12] LASKOVA B, ZUKALOYA M, ZUKAL A, et al. Capacitive contribution to Li-storage in TiO2 (B) and TiO2 (anatase)[J]. Journal of Power Sources,2014,246:103-109. doi: 10.1016/j.jpowsour.2013.07.073
    [13] LIU J, LIN C Y, TZOU W C, et al. Reflection of blue light using Bi-layer Al2O3-TiO2 E-beam coating films[J]. Crystal Growth & Design,2018,18(9):5426-5433.
    [14] LONG J, JIANG C W, ZHU J D, et al. Controlled TiO2 coating on hollow glass microspheres and their reflective thermal insulation properties[J]. Particuology,2020,49:33-39. doi: 10.1016/j.partic.2019.03.002
    [15] MANICKAM K, MUTHUSAMY V, MANICKAM S, et al. Effect of annealing temperature on structural, morphological and optical properties of nanocrystalline TiO2 thin films synthesized by sol-gel dip coating method[J]. Materials Today: Proceedings,2019,23(1):68-72.
    [16] WIRANWETCHAYAN O, PROMNOPAT S, THONGTEM T, et al. Effect of polymeric precursors on the properties of TiO2 films prepared by sol-gel method[J]. Materials Chemistry and Physics,2019,240:122219-122227.
    [17] JINYEONG S, MINSANG S, DESHMUKH P R, et al. Preparation of ultrathin TiO2 coating on boron particles by thermal chemical vapor deposition and their oxidation-resistance performance[J]. Journal of Alloys & Compounds,2018,767:924-931.
    [18] MA D, ZHU L, LIU B. Hydrothermally grown uniform TiO2 coatings on ZrO2 fibers and their infrared reflective and thermal conductive properties[J]. Ceramics International,2019,46(3):3400-3405.
    [19] NESHCHIMENKO V V, LI C D, MIKHAILOV M M. Radiation stability of TiO2 hollow particles pigments and coatings synthesis by hydrothermal methods from TTIP[J]. Dyes & Pigments,2017,145:354-358.
    [20] SHANDILYA M, RAI R, SINGH J. Review: Hydrothermal technology for smart materials[J]. Advances in Applied Ceramics,2016,115(6):1-23.
    [21] PRATHAN A, SANGLAO J, WANG T, et al. Controlled structure and growth mechanism behind hydrothermal growth of TiO2 nanorods[J]. Scientific Reports,2020,10(1):8065.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1135
  • HTML全文浏览量:  475
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-26
  • 录用日期:  2020-12-25
  • 网络出版日期:  2021-01-05
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回