留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂面内应力状态下平面编织高铝纤维增强氧化铝基复合材料强度及疲劳寿命预测方法

陆毛须 姬晓慧 郝自清 张磊 刘刘

陆毛须, 姬晓慧, 郝自清, 等. 复杂面内应力状态下平面编织高铝纤维增强氧化铝基复合材料强度及疲劳寿命预测方法[J]. 复合材料学报, 2021, 38(11): 3785-3798. doi: 10.13801/j.cnki.fhclxb.20210202.001
引用本文: 陆毛须, 姬晓慧, 郝自清, 等. 复杂面内应力状态下平面编织高铝纤维增强氧化铝基复合材料强度及疲劳寿命预测方法[J]. 复合材料学报, 2021, 38(11): 3785-3798. doi: 10.13801/j.cnki.fhclxb.20210202.001
LU Maoxu, JI Xiaohui, HAO Ziqing, et al. Prediction of strength and fatigue life for 2D plain-woven high-alumina fiber reinforced alumina matrix composites under a complex in-plane stress state[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3785-3798. doi: 10.13801/j.cnki.fhclxb.20210202.001
Citation: LU Maoxu, JI Xiaohui, HAO Ziqing, et al. Prediction of strength and fatigue life for 2D plain-woven high-alumina fiber reinforced alumina matrix composites under a complex in-plane stress state[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3785-3798. doi: 10.13801/j.cnki.fhclxb.20210202.001

复杂面内应力状态下平面编织高铝纤维增强氧化铝基复合材料强度及疲劳寿命预测方法

doi: 10.13801/j.cnki.fhclxb.20210202.001
基金项目: 国家自然科学基金(11472043);国防科技重点实验室基金(6142004190306);基础加强计划重点基础研究项目(2019-JCJQ-ZD-308-00)
详细信息
    通讯作者:

    刘刘,博士,副教授,博士生导师,研究方向为复合材料力学 E-mail:liuliu@bit.edu.cn

  • 中图分类号: TB332

Prediction of strength and fatigue life for 2D plain-woven high-alumina fiber reinforced alumina matrix composites under a complex in-plane stress state

  • 摘要: 针对平面编织氧化铝基复合材料提出了一种复杂面内应力状态下的强度准则和疲劳寿命预测方法。通过拉伸、压缩及纯剪切试验,分别获得了材料的静强度指标。考虑材料拉、压性能的差异和面内拉-剪联合作用对材料强度的影响机制,提出了修正的Hoffman强度理论。采用该强度理论预测得到的偏轴拉伸强度与试验结果基本一致,偏差不超过10%。开展了偏轴角θ=0°、15°、30°、45°,应力比R=0.1,频率f=10 Hz的拉伸疲劳试验,试验结果表明随着偏轴角的增加,相同轴向拉伸载荷下的疲劳寿命逐渐降低。由于面内剪切应力分量的作用,疲劳失效由纤维主导逐渐过渡到纤维和基体共同主导的模式。基于单轴疲劳寿命曲线,采用Broutman-Sahu剩余强度模型表征剩余强度随疲劳循环次数的变化规律,结合剩余强度演化模型和修正的Hoffman强度理论,提出了一种面内复杂载荷条件下的疲劳寿命预测模型,并引入疲劳剪切损伤影响因子表征拉-剪应力联合作用对材料疲劳行为的影响。采用本文提出的疲劳寿命预测模型,预测不同偏轴角拉伸疲劳寿命,预测结果与试验结果基本一致,偏差在1倍寿命范围内。比较结果表明在给定应力比、温度和疲劳载荷频率条件下,该疲劳寿命预测模型可以用来预测平面编织氧化铝基复合材料拉-剪复杂面内载荷条件下疲劳寿命。

     

  • 图  1  拉伸试样尺寸(a)、拉伸试样照片(b)、压缩试样尺寸(c)、压缩试样照片(d)、面内纯剪试样尺寸(e)和贴有加强片的剪切试样照片(f)

    Figure  1.  Dimension of tensile specimen (a), picture of tensile specimen (b), dimension of compression specimen (c), picture of compression specimen (d), dimension of in-plane pure shear specimen (e) and picture of in-plane pure shear specimen with strengthening film (f)

    图  2  试验装置图 (a) 和纯剪切试验装置图 (b)

    Figure  2.  Experimental setup (a) and pure shear experimental setup (b)

    图  3  高铝纤维增强氧化铝基复合材料15°偏轴拉伸DIC实测位移场和应变场分布(F=893.8 N)((a) x方向位移u;(b) y方向的位移v;(c) ${\varepsilon _{xx}}$;(d) ${\varepsilon _{yy}}$;(e) ${\tau _{xy}}$)

    Figure  3.  Distribution of displacement and strain measured by DIC under 15° off-axial tension test of high-alumina fiber reinforced alumina matrix composites (F=893.8 N)((a) Displacement u along x-direction; (b) Displacement v along y-direction; (c) ${\varepsilon _{xx}}$; (d) ${\varepsilon _{yy}}$; (e) ${\tau _{xy}}$)

    图  4  高铝纤维增强氧化铝基复合材料纯剪切试验DIC实测位移场和应变场分布(F=125.5 N)((a) x方向位移u;(b) y方向的位移v;(c) ${\varepsilon _{xx}}$;(d) ${\varepsilon _{yy}}$;(e) ${\tau _{xy}}$)

    Figure  4.  Distribution of displacement and strain measured by DIC under pure shear test of high-alumina fiber reinforced alumina matrix composites (F=125.5 N)((a) Displacement u along x-direction; (b) Displacement v along y-direction; (c) ${\varepsilon _{xx}}$; (d) ${\varepsilon _{yy}}$; (e) ${\tau _{xy}}$)

    图  5  高铝纤维增强氧化铝基复合材料偏轴拉伸试样在轴向拉伸条件下沿材料坐标系典型应力-应变曲线((a) 沿材料经向;(b) 沿材料纬向及面内剪切方向)

    Figure  5.  Typical stress-strain curves of off-axial tensile high-alumina fiber reinforced alumina matrix composites specimens in the material coordinate system((a) Along the material warp direction; (b) Along the in-plane shear direction and the material weft direction)

    图  6  高铝纤维增强氧化铝基复合材料轴向压缩应力-应变曲线 (a)和面内剪切应力-应变曲线 (b)

    Figure  6.  Stress-strain curve of axial compression (a) and stress-strain curve of in-plane shear (b) for high-alumina fiber reinforced alumina matrix composites

    图  7  高铝纤维增强氧化铝基复合材料剪切破坏的微观机制 (a)和面内剪切试验断裂试件 (b)

    Figure  7.  Microscopic mechanism of shear failure (a) and specimen fractured in pure shear test (b) for high-alumina fiber reinforced alumina matrix composites

    图  8  采用不同的失效准则预测高铝纤维增强氧化铝基复合材料单轴拉伸强度

    Figure  8.  Uniaxial tensile strength of high-alumina fiber reinforced alumina matrix composites predicted by different failure criteria

    图  9  不同偏轴角下高铝纤维增强氧化铝基复合材料单轴拉伸疲劳S-N曲线

    Figure  9.  Uniaxial tensile fatigue S-N relationships of high-alumina fiber reinforced alumina matrix composites for various off-axial angles at room temperature

    图  10  参考$\beta {\rm{ - }}\tau _{12}^{\max }$曲线

    Figure  10.  Reference$\beta {\rm{ - }}\tau _{12}^{\max }$curve

    图  11  高铝纤维增强氧化铝基复合材料预测S-N曲线和试验数据的对比

    Figure  11.  Comparison of predicted S-N curves and test data for high-alumina fiber reinforced alumina matrix composites

    图  12  本文提出的疲劳模型预测得到的高铝纤维增强氧化铝基复合材料疲劳寿命和试验数据的对比

    Figure  12.  Comparison of fatigue life predicted by the model proposed in this article and test data for high-alumina fiber reinforced alumina matrix composites

    图  13  Fawaz疲劳模型预测得到的高铝纤维增强氧化铝基复合材料寿命和试验数据的对比

    Figure  13.  Comparison of fatigue life predicted by the Fawaz model and test data for high-alumina fiber reinforced alumina matrix composites

    图  14  高铝纤维增强氧化铝基复合材料轴向剩余强度随循环次数变化规律

    Figure  14.  Change law of axial residual strength with different number of cycles for high-alumina fiber reinforced alumina matrix composites

    表  1  不同偏轴角下二维平面编织高铝纤维增强氧化铝基复合材料单轴拉伸试验结果

    Table  1.   Uniaxial tensile test results of 2D plain woven high-alumina fiber reinforced alumina-based composites for different off-axis angles

    Off-axis
    angle
    $\theta $/(°)
    Elastic
    modulus
    $E_{22}^0{\rm{/GPa}}$
    Fracture
    stress
    $\sigma _{11}^{\rm{u}}/{\rm{MPa}}$
    Fracture
    strain
    $\varepsilon _{11}^{\rm{u}}/10^{-6}$
    Elastic
    modulus
    $E_{22}^0{\rm{/GPa}}$
    Fracture
    stress
    $\sigma _{22}^{\rm{u}}/{\rm{MPa}}$
    Fracture
    strain
    $\varepsilon _{22}^{\rm{u} }/10^{-6}$
    Shear
    modulus
    $G_{12}^0/{\rm{GPa}}$
    Fracture
    stress
    $\tau _{12}^{\rm{u}}/{\rm{MPa}}$
    Fracture
    strain
    $\gamma _{12}^{\rm{u}}/10^{-6}$
    0 $ {11.1\pm0.7} $ $ {43.69\pm6.4} $ $ {}{4\;991\pm810} $ 0 0 0 0 0 0
    15 $ {7.98\pm}{1.}{5} $ $ {33\pm5.5} $ $ {6\;687\pm1\;031} $ $ {3.15\pm0.}{8} $ $ {2.35\pm}{0.4} $ $ {}{-1873\pm}{148} $ $ {2.27\pm}{0.4} $ $ {8.83\pm}{1.5} $ $ {-8\;093\pm4\;008} $
    30 $ {4.3\pm0.3} $ $ {19.4\pm1.}{6} $ $ {}{9\;916\pm2\;205} $ $ {3.7\pm0.6} $ $ {6.48\pm0.5} $ $ {-2\;983\pm914} $ $ {1.67\pm0.2} $ $ {11.2\pm0.9} $ $ {19\;025\pm7\;235} $
    45 $ {8.31\pm}{1.0} $ $ {9.88\pm0}{.7} $ $ {1\;509\pm696} $ $ {9.06\pm0.9} $ $ {9.79\pm0.9} $ $ {2\;027\pm653} $ $ {1.37\pm0.0}{9} $ $ {9.88\pm0.7} $ $ {20\;477\pm1\;784} $
    下载: 导出CSV

    表  2  常温高铝纤维增强氧化铝基复合材料面内强度参数

    Table  2.   In-plane strength parameters of high-alumina fiber reinforced alumina matrix composites at room temperature

    ${X_{\rm{t}}}{\rm{/MPa}}$${Y_{\rm{t}}}{\rm{/MPa}}$${X_{\rm{c}}}{\rm{/MPa}}$${Y_{\rm{c}}}{\rm{/MPa}}$${S_{12}}{\rm{/MPa}}$
    43.7 43.7 −6.56 −6.56 10.8
    Notes: ${X_{\rm{t}}}$—Tensile strength along off-axial angle $ \theta $=0°; ${Y_{\rm{t}}}$—Tensile strength along off-axial angle $ \theta $=90°; ${S_{12}}$—In-plane shear strength; ${X_{\rm{c}}}$—Compression strength along off-axial angle $ \theta $=0°; ${Y_{\rm{c}}}$—Compression strength along off-axial angle $ \theta $=90°.
    下载: 导出CSV

    表  3  常温应力比R=0.1高铝纤维增强氧化铝基复合材料偏轴拉-拉疲劳寿命试验结果

    Table  3.   Off-axis tension-tension fatigue life test results of high-alumina fiber reinforced alumina matrix composites at room temperature and stress ratio R=0.1

    Off-axis
    angle $\theta {{\rm{/}}(^ \circ) }$
    Fatigue life Nf /cycle
    ${\sigma _{\max }}$=0.85${\sigma _{\rm{u}}}$${\sigma _{\max }}$=0.8${\sigma _{\rm{u}}}$${\sigma _{\max }}$=0.75${\sigma _{\rm{u}}}$${\sigma _{\max }}$=0.7${\sigma _{\rm{u}}}$${\sigma _{\max }}$=0.65${\sigma _{\rm{u}}}$${\sigma _{\max }}$=0.6${\sigma _{\rm{u}}}$${\sigma _{\max }}$=0.55${\sigma _{\rm{u}}}$${\sigma _{\max }}$=0.5${\sigma _{\rm{u}}}$
    0 8763 91853 217568 243663 412487
    15 9375 142410 175446 288482 321518
    30 25350 133727 184454 287831 312318
    45 9232 87726 191084 232976 305254
    Note: ${\sigma _{\max }}$ (MPa)—Maximum cyclic stress.
    下载: 导出CSV
  • [1] 张明. 增强改性SiO2气凝胶复合材料的研究进展[J]. 复合材料学报, 2020, 37(11):1-10.

    ZHANG Ming. Research progress of reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica,2020,37(11):1-10(in Chinese).
    [2] 郭玉超, 马寅魏, 石多奇, 等. 莫来石纤维增强SiO2气凝胶复合材料的力学性能试验[J]. 复合材料学报, 2016, 33(6):1297-1304.

    GUO Yuchao, MA Yinwei, SHI Duoqi et al. Mechanical property tests of mullite fiber-reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1297-1304(in Chinese).
    [3] 米春虎, 姜勇刚, 石多奇, 等. 陶瓷纤维增强氧化硅气凝胶复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3):635-643.

    MI Chunhu, JIANG Yonggang, SHI Duoqi et al. Mechanical property test of ceramic fiber reinforced silica aerogel composites[J]. Acta Material Composite Sinica,2014,31(3):635-643(in Chinese).
    [4] LI J, JIAO G, WANG B, et al. Damage characteristics and constitutive modeling of the 2D C/SiC composite: Part I-Experiment and analysis[J]. Chinese Journal of Aeronautics,2014,27(6):1586-1597. doi: 10.1016/j.cja.2014.10.026
    [5] LI J, JIAO G, WANG B, et al. Damage characteristics and constitutive modeling of the 2D C/SiC composite: Part II-Material model and numerical implementation[J]. Chinese Journal of Aeronautics,2015,28(1):314-326. doi: 10.1016/j.cja.2014.10.027
    [6] 赵淑媛, 董江龙, 孙新杨, 等. 纤维增强气凝胶复合材料高温结构转变及热稳定性研究[J]. 装备环境工程, 2020, 17(1):58-62.

    ZHAO Shuyuan, DONG Jianglong, SUN Xinyang et al. Structural changes and thermal stability of fiber reinforced aerogel composites[J]. Equipment Environmental Engineering,2020,17(1):58-62(in Chinese).
    [7] 李俊, 矫桂琼, 王波, 等. 二维编织C/SiC复合材料非线性损伤本构模型与应用[J]. 复合材料学报, 2013, 30(1):165-171.

    LI Jun, JIAO Guiqiong, WANG Bo, et al. A non-linear damage constitutive model for 2D woven C/SiC composite material and its application[J]. Acta Materiae Compositae Sinica,2013,30(1):165-171(in Chinese).
    [8] FAWAZ Z, ELLYIN F. Fatigue failure model for fiber-reinforced materials under general loading conditions[J]. Journal of Composite Materials,1994,28(15):1432-1451. doi: 10.1177/002199839402801503
    [9] KAWAKAMI H, FUJII T, MORITA Y. Fatigue degradation and life prediction of glass fabric polymer composite under tension/torsion biaxial loadings[J]. Journal of Reinforced Plastics & Composites,1996,15(2):183-195.
    [10] PHILIPPIDIS T, VASSILOPOULOS A. Fatigue strength prediction under multiaxial stress[J]. Journal of Composite Materials,1999,33(17):1578-1599. doi: 10.1177/002199839903301701
    [11] SCHULTE K, REESE E, CHOU T, et al. Fatigue behaviour and damage development in woven fabric and hybrid fabric composites[C]//MATTHEWS F L, Buskell N C, HODGKINSON J M, MORTON J. Sixth International Conference on Composite Materials, Second European Conference on Composite Materials: ICCM & ECCM. London: Elsevier, 1987: 4.89-4.99.
    [12] MIYANO Y, MCMURRAY M, ENYAMA J, et al. Loading rate and temperature dependence on flexural fatigue behavior of a satin woven CFRP laminates[J]. Journal of Composite Materials,1994,28(13):1250-1260. doi: 10.1177/002199839402801305
    [13] KHAN R, KHAN Z, AL-SULAIMAN F, et al. Fatigue life estimates in woven carbon fabric epoxy composites at non-ambient temperature[J]. Journal of Composite Materials,2002,36(22):2517-2535. doi: 10.1177/002199802761405277
    [14] YASUHIDE S, SATORU T, KATSUMI T, et al. Cryogenic fatigue behavior of plain weave glass/epoxy composite laminates under tension–tension cycling[J]. Cryogenics,2006,46(11):794-798. doi: 10.1016/j.cryogenics.2006.07.003
    [15] OWEN M, GRIFFITHS J. Evaluation of biaxial stress failure surfaces for a glass fabric reinforced polyester resin under static and fatigue loading[J]. Journal of Composite Materials,1978,13:1521-1537.
    [16] PANDITA S, HUYSMANS G, WEVERS M, et al. Tensile fatigue behaviour of glass plain-weave fabric composites in on- and off-axis directions[J]. Composites Part A: Applied Science & Manufacturing,2001,32(10):1533-1539. doi: 10.1016/S1359-835X(01)00053-7
    [17] AGARWAL B, BROUTMAN L. Analysis and performance of fiber composites[M]. London: Wiley; 1990: 287-314.
    [18] XIAO J, BATHIAS C. Fatigue behavior of unnotched and notched woven glass/epoxy laminates[J]. Composites Science & Technology,1994,50(2):141-148.
    [19] SINGH K, ANSARI M, AZAM M. Fatigue life and damage evolution in woven GFRP angle ply laminates[J]. International Journal of Fatigue,2021,142:105964. doi: 10.1016/j.ijfatigue.2020.105964
    [20] FOTI F, PANNIER Y, MELLIER D, et al. Damage characterization during high temperature fatigue of off-axis woven organic matrix composites for aircraft applications[J]. IOP Conference Series: Materials Science and Engineering,2018,406:012055. doi: 10.1088/1757-899X/406/1/012055
    [21] CAI D, ZHOU G, WANG X, et al. Experimental investigation on mechanical properties of unidirectional and woven fabric glass/epoxy composites under off-axis tensile loading[J]. Polymer Testing,2017,58:142-152. doi: 10.1016/j.polymertesting.2016.12.023
    [22] KAWAI M, TANIGUCHI T. Off-axis fatigue behavior of plain weave carbon epoxy fabric laminates at room and high temperatures and its mechanical modeling[J]. Composites Part A: Applied Science & Manufacturing,2006,37(2):243-256. doi: 10.1016/j.compositesa.2005.07.003
    [23] KAWAI M, YAJIMA S, HACHINOHE A, et al. Off-axis fatigue behavior of unidirectional carbon fiber-reinforced composites at room and high temperatures[J]. Journal of Composite Materials,2001,35(76):545-576.
    [24] KAWAI M, YAJIMA S, HACHINOHE A, et al. High-temperature off-axis fatigue behaviour of unidirectional carbon fiber-reinforced composites with different resin matrices[J]. Composites Science & Technology,2001,61(9):1285-1302.
    [25] 中华人民共和国国防科学技术工业委员会. 连续纤维增强陶瓷基复合材料常温拉伸性能试验方法: GJB 6475—2008[S]. 北京: 国防科工委军标出版发行部, 2008.

    The Commission of Science, Technology and Industry for National Defense of the People’s Republic of China. Test method for tensile properties of continuous fiber-reinforced ceramic composites at ambient temperature: GJB 6475—2008[S]. Beijing: The Commission of Science, Technology and Industry for National Defense Military Standards Press, 2008.
    [26] 吕双祺, 石多奇, 杨晓光等. 采用数字图像相关方法的莫来石纤维增强气凝胶复合材料力学试验[J]. 复合材料学报, 2015, 32(5):1428-1435.

    LV Shuangqi, SHI Duoqi, YANG Xiaoguang, et al. Mechanical tests of mullite fiber reinforced aerogel composites using digital image correlation method[J]. Acta Materiae Compositae Sinica,2015,32(5):1428-1435(in Chinese).
    [27] 许杨剑, 李翔宇, 王效贵. 基于遗传算法的功能梯度材料参数的反演分析[J]. 复合材料学报, 2013, 30(4):170-176.

    XU Yangjian, LI Xiangyu, WANG Xiaogui. Mechanical tests of mullite fiber reinforced aerogel composites using digital image correlation method[J]. Acta Materiae Compositae Sinica,2013,30(4):170-176(in Chinese).
    [28] American Society for Testing and Materials International. Standard test methods for monotonic compressive strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at ambient temperatures: ASTM C1358—05[S]. Pennsylvania: ASTM International, 2005.
    [29] American Society for Testing and Materials International. Standard test methods for shear strength of continuous fiber-reinforced advanced ceramics at ambient temperatures: ASTM C1292—00[S]. Pennsylvania: ASTM International, 2005.
    [30] 姜如. 连续氧化铝纤维增强氧化铝基复合材料的制备与性能研究[D]. 长沙: 国防科技大学, 2019.

    JIANG Ru. Preparation and performance of continuous alumina fiber reinforced alumina matrix composites[D]. Changsha: National University of Defense Technology, 2019(in Chinese).
    [31] JI Xiaohui, HAO Ziqing, SU Lijun, et al. Characterizing the constitutive response of plain-woven fibre reinforced aerogel matrix composites using digital image correlation[J]. Composite Structures,2020:111652.
    [32] 沈观林, 胡更开, 刘彬. 复合材料力学[M]. 第二版. 北京: 清华大学出版社, 2013: 64-69.

    SHEN Guanlin, HU Gengkai, LIU Bin. Composite mechanics[M]. Second Edition. Beijing: Tsinghua University Press, 2013: 64-69(in Chinese).
    [33] QUARESIMIN M, SUSMEL L, TALREJA R. Fatigue behaviour and life assessment of composite laminates under multiaxial loadings[J]. International Journal of Fatigue,2010,32(1):2-16. doi: 10.1016/j.ijfatigue.2009.02.012
    [34] 蔡登安. 纤维增强复合材料的力学行为与多轴疲劳性能研究[D]. 南京: 南京航空航天大学, 2017.

    CAI Dengan. On mechanical and multiaxial fatigue behaviour of fibre-reinforced composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
    [35] POST N, CASE S, LESKO J, et al. Modeling the variable amplitude fatigue of composite materials: A review and evaluation of the state of the art for spectrum loading[J]. International Journal of Fatigue,2008,30(12):2064-2086. doi: 10.1016/j.ijfatigue.2008.07.002
    [36] BROUNTMAN L, SAHU S. A new theory to predict cumulative fatigue damage in fiber glass reinforced plastics[J]. ASTM STP,1972,497:170-188.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1053
  • HTML全文浏览量:  441
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-17
  • 录用日期:  2021-01-16
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回