留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Li-Ni共掺尖晶石型LiMn2O4单晶多面体材料的制备及电化学性能

李萌 刘红雷 郭俊明 向明武 刘晓芳 白红丽 白玮

李萌, 刘红雷, 郭俊明, 等. Li-Ni共掺尖晶石型LiMn2O4单晶多面体材料的制备及电化学性能[J]. 复合材料学报, 2021, 38(10): 3402-3411. doi: 10.13801/j.cnki.fhclxb.20201215.002
引用本文: 李萌, 刘红雷, 郭俊明, 等. Li-Ni共掺尖晶石型LiMn2O4单晶多面体材料的制备及电化学性能[J]. 复合材料学报, 2021, 38(10): 3402-3411. doi: 10.13801/j.cnki.fhclxb.20201215.002
LI Meng, LIU Honglei, GUO Junming, et al. Preparation and electrochemical properties of Li-Ni co-doping spinel LiMn2O4 single crystal polyhedron material[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3402-3411. doi: 10.13801/j.cnki.fhclxb.20201215.002
Citation: LI Meng, LIU Honglei, GUO Junming, et al. Preparation and electrochemical properties of Li-Ni co-doping spinel LiMn2O4 single crystal polyhedron material[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3402-3411. doi: 10.13801/j.cnki.fhclxb.20201215.002

Li-Ni共掺尖晶石型LiMn2O4单晶多面体材料的制备及电化学性能

doi: 10.13801/j.cnki.fhclxb.20201215.002
基金项目: 国家自然科学基金(51972282;U1602273);云南省基础研究计划项目青年项目(202001AU070008)
详细信息
    通讯作者:

    郭俊明,硕士,教授,博士生导师,研究方向为锂离子电池正极材料 E-mail:guojunming@tsinghua.org.cn

  • 中图分类号: TM912

Preparation and electrochemical properties of Li-Ni co-doping spinel LiMn2O4 single crystal polyhedron material

  • 摘要: 采用无焰燃烧法在500℃反应3 h,然后分别在600、650、700和750℃二次焙烧6 h制备了尖晶石型Li1.02Ni0.05Mn1.93O4正极材料。结果表明,不同焙烧温度制备的Li-Ni共掺材料没有改变LiMn2O4的立方尖晶石结构,且随着焙烧温度的升高,颗粒尺寸变大,结晶性提高。二次焙烧温度为700℃的Li1.02Ni0.05Mn1.93O4单晶多面体晶粒正极材料具有{111}、{110}和{100}面,且电化学性能较优,在1 C倍率下初始放电比容量为108.2 mA·h·g−1,循环500次后的容量保持率为76.8%;在5 C下首次放电比容量可达到99.0 mA·h·g−1,1000次循环后,仍能维持72.1%的容量保持率;在10 C下仍显示出71.3 mA·h·g−1的首次放电比容量及经500次循环后86.4%的容量保持率。并且其具有较大的Li+扩散系数和较小的表观活化能。Li-Ni共掺LiMn2O4单晶多面体材料能够有效抑制Jahn-Teller效应,减小Mn的溶解及增加Li+扩散通道,使材料的晶体结构稳定,提高倍率性能和循环性能。

     

  • 图  1  不同二次焙烧温度Li1.02Ni0.05Mn1.93O4-x样品的XRD图谱

    Figure  1.  XRD patterns of samples Li1.02Ni0.05Mn1.93O4-x at different secondary calcination temperatures(a. Li1.02Ni0.05Mn1.93O4-600; b. Li1.02Ni0.05Mn1.93O4-650; c. Li1.02Ni0.05Mn1.93O4-700; d. Li1.02Ni0.05Mn1.93O4-750)

    图  2  Li1.02Ni0.05Mn1.93O4-x样品的SEM图像:(a) 500℃燃烧反应3 h产物;(b) Li1.02Ni0.05Mn1.93O4-600;(c) Li1.02Ni0.05Mn1.93O4-650;(d) Li1.02Ni0.05Mn1.93O4-700;(e) Li1.02Ni0.05Mn1.93O4-750;(f) 八面体及多面体示意图

    Figure  2.  SEM images of Li1.02Ni0.05Mn1.93O4-x: (a) Combustion at 500℃ for 3 h; (b) Li1.02Ni0.05Mn1.93O4-600; (c) Li1.02Ni0.05Mn1.93O4-650; (d) Li1.02Ni0.05Mn1.93O4-700; (e) Li1.02Ni0.05Mn1.93O4-750; (f) Schematic diagram of octahedron and polyhedron

    图  3  Li1.02Ni0.05Mn1.93O4-700样品的XPS图谱((a) 全图谱;(b) Mn 2p3/2拟合图谱;(c) Ni 2p图谱)

    Figure  3.  XPS spectra of Li1.02Ni0.05Mn1.93O4-700((a) Survey; (b) Mn 2p3/2; (c) Ni 2p)

    图  4  不同二次焙烧温度Li1.02Ni0.05Mn1.93O4-x样品1 C首次充放电曲线 (a) 、1 C循环性能图(b)、5 C循环性能图(c)、10 C循环性能图 (d)

    Figure  4.  Different secondary calcination temperatures of Li1.02Ni0.05Mn1.93O4-x: initial charge-discharge curves at 1 C (a), cycle performances diagrams at 1 C (b), 5 C (c) and 10 C (d)

    图  5  不同二次焙烧温度Li1.02Ni0.05Mn1.93O4-x样品的倍率性能

    Figure  5.  Rate capability of Li1.02Ni0.05Mn1.93O4-x at different secondary calcination temperatures

    图  6  不同二次焙烧温度Li1.02Ni0.05Mn1.93O4-x样品的CV曲线

    Figure  6.  CV curves of Li1.02Ni0.05Mn1.93O4-x at different secondary calcination temperatures

    图  7  不同二次焙烧温度Li1.02Ni0.05Mn1.93O4x样品:(a) 循环前EIS图;(b) 1 C循环500次的EIS图;(c) 实部阻抗Z'ω−1/2的关系

    Figure  7.  Nyquist plots of Li1.02Ni0.05Mn1.93O4x at different secondary calcination temperatures: (a) Before cycles at 1 C; (b) After 500 cycles at 1 C; (c) Relationship of real impedance Z' vs. ω−1/2

    图  8  不同二次焙烧温度Li1.02Ni0.05Mn1.93O4-x样品在不同温度下的EIS图(插图为相应曲线的lgi0与1000 T−1的Arrhenius关系)

    Figure  8.  Nyquist plots of Li1.02Ni0.05Mn1.93O4-x at different secondary calcination temperatures at different temperatures (Insets are the Arrhenius plots of lgi0 vs. 1000 T−1)

    表  1  样品的命名

    Table  1.   Naming of samples

    SampleSecondary calcination temperature/℃
    Li1.02Ni0.05Mn1.93O4-600 600
    Li1.02Ni0.05Mn1.93O4-650 650
    Li1.02Ni0.05Mn1.93O4-700 700
    Li1.02Ni0.05Mn1.93O4-750 750
    下载: 导出CSV

    表  2  不同二次焙烧温度Li1.02Ni0.05Mn1.93O4-x样品在循环前和500次循环后的电荷转移阻抗Rct

    Table  2.   Charge transfer impedance Rct of Li1.02Ni0.05Mn1.93O4-x at different secondary calcination temperatures before and after 500 cycles

    SampleBefore cyclesAfter 500 cycles
    RsRctRsRct
    Li1.02Ni0.05Mn1.93O4-600 4.02 184.98 7.31 260.69
    Li1.02Ni0.05Mn1.93O4-650 2.78 178.22 10.40 242.60
    Li1.02Ni0.05Mn1.93O4-700 2.63 160.37 7.92 225.08
    Li1.02Ni0.05Mn1.93O4-750 3.18 229.82 14.70 331.30
    Note: Rs—Electrolyte impedanc.
    下载: 导出CSV
  • [1] NAOKI N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today,2015,18(5):252-264.
    [2] PARK O K, CHO Y, LEE S, et al. Who will drive electric vehicles, olivine or spinel[J]. Energy & Environmental Science,2011,4(5):1621-1633.
    [3] 李军, 李少芳, 李庆彪, 等. Cr3+掺杂LiNi0.5Mn1.5O4材料的制备及性能[J]. 稀有金属材料与工程, 2017, 46(11):3458-3463.

    LI Jun, LI Shaofang, LI Qingbiao, et al. Synthesis and performance study of Cr-doped LiNi0.5Mn1.5O4 cathode material[J]. Rare Metal Materials and Engineering,2017,46(11):3458-3463(in Chinese).
    [4] 饶帆, 陈爱华, 赵永彬. 锂离子电池正极材料LiNi0.8Co0.15Al0.05O2的制备与性能[J]. 复合材料学报, 2018, 35(4):946-956.

    RAO Fan, CHEN Aihua, ZHAO Yongbin. Preparation and performance of LiNi0.8Co0.15Al0.05O2 cathode material of lithium ion battery[J]. Acta Materiae Compositae Sinica,2018,35(4):946-956(in Chinese).
    [5] JIANG C H, TANG Z L, WANG S T, et al. A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries[J]. Journal of Power Sources,2017,357(31):144-148.
    [6] CAI Y J, HUANG Y D, WANG X C, et al. Long cycle life, high rate capability of truncated octahedral LiMn2O4 cathode materials synthesized by a solid-state combustion reaction for lithium ion batteries[J]. Ceramics International,2014,40(9):14039-14043.
    [7] TANG X, LIN B H, GE Y, et al. LiMn2O4 nanorod arrays: A potential three-dimensional cathode for lithium-ion microbatteries[J]. Materials Research Bulletin,2015,69:2-6.
    [8] LIU Y Z, ZHANG M H, XIA Y G, et al. One-step hydrothermal method synthesis of core-shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries[J]. Journal of Power Sources,2014,256:66-71.
    [9] CHO J, KIM T J, KIM Y J, et al. Complete blocking of Mn3+ ion dissolution from a LiMn2O4 spinel intercalation compound by Co3O4 coating[J]. Chemical Communications,2001(12):1074-1075.
    [10] RAGAVENDRAN K, XIA H, MANDAL P, et al. Jahn-Teller effect in LiMn2O4: Influence on charge ordering, magnetoresistance and battery performance[J]. Physical Chemistry Chemical Physics,2017,19(3):2073-2077.
    [11] DENG B H, NAKAMURA H, YOSHIO M. Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures[J]. Journal of Power Sources,2008,180(2):864-868.
    [12] WEN W C, JU B W, WANG X Y, et al. Effects of magnesium and fluorine co-doping on the structural and electrochemical performance of the spinel LiMn2O4 cathode materials[J]. Electrochimica Acta,2014,147:271-278.
    [13] KIM J S, KIM K S, CHO W, et al. A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries[J]. Nano Letters,2012,12(12):6358-6365.
    [14] 伊廷锋, 胡信国, 高昆, 等. 影响锂离子电池正极材料LiMn2O4性能的因素[J]. 稀有金属快报, 2005, 24(12):1-5.

    YI Tingfeng, HU Xinguo, GAO Kun, et al. Factors influencing performance of positive materials LiMn2O4 for lithium ion battery[J]. Rare Metals Express,2005,24(12):1-5(in Chinese).
    [15] PERAMUNAGE D, ABRAHOM K M. Preparation and electrochemical characterization of overlithiated spinel LiMn2O4[J]. Journal of The Electrochemical Society,1998,145(4):1131-1136.
    [16] SHU J, YI T F, SHUI M, et al. Comparison of electronic property and structural stability of LiMn2O4 and LiNi0.5Mn1.5O4 as cathode materials for lithium-ion batteries[J]. Computational Materials Science,2010,50(2):776-779.
    [17] 秦毅红, 马尚德, 张云河. 锂镍复合掺杂尖晶石LiMn2O4的制备及电化学性能[J]. 电源技术, 2008, 132(5):293-295. doi: 10.3969/j.issn.1002-087X.2008.05.004

    QIN Yihong, MA Shangde, ZHANG Yunhe. Preparation and electrochemical property of Li and Ni co-doped LiMn2O4[J]. Chinese Journal of Power Sources,2008,132(5):293-295(in Chinese). doi: 10.3969/j.issn.1002-087X.2008.05.004
    [18] HWANG B J, SANTHANAM R, HU S G. Synthesis and characterization of multidoped lithium manganese oxide spinel, Li1.02Co0.1Ni0.1Mn1.8O4, for rechargeable lithium batteries[J]. Journal of Power Sources,2002,108(1-2):250-255.
    [19] HENDRIKS R, CUNHA D M, SINGH D P, et al. Enhanced lithium transport by control of crystal orientation in spinel LiMn2O4 thin film cathodes[J]. ACS Applied Energy Materials,2018,1(12):7046-7051.
    [20] 于月, 白红丽, 刘晓芳, 等. 液相无焰燃烧合成LiNixMn2-xO4(x≤0.10)及电化学性能研究[J]. 电池工业, 2018, 22(2):62-69. doi: 10.3969/j.issn.1008-7923.2018.02.002

    YU Yue, BAI Hongli, LIU Xiaofang, et al. Study on the synthesis of LiNixMn2-xO4 (x≤0.10) and electrochemical properties via a liquid flameless combustion method[J]. Chinese Battery Industry,2018,22(2):62-69(in Chinese). doi: 10.3969/j.issn.1008-7923.2018.02.002
    [21] 朱金玉, 刘清, 向明武, 等. Ni-Cu双掺LiMn2O4正极材料的制备及电化学性能研究[J]. 现代化工, 2015, 43(1):109-115.

    ZHU Jinyu, LIU Qing, XIANG Mingwu, et al. Preparation of Ni-Cu co-doped LiMn2O4 cathode material and study on its electrochemical properties[J]. Modern Chemical Industry,2015,43(1):109-115(in Chinese).
    [22] 刘先平, 王桂赟, 宁利娜, 等. 液相燃烧法合成CuCrO2及其与WO3复合后的光催化产氢性能[J]. 硅酸盐学报, 2015, 43(1):109-115.

    LIU Xianping, WANG Guiyun, NING Lina, et al. Synthesis of CuCrO2 by solution combustion reaction method and photocatalytic hydrogen property of CuCrO2 composite with WO3[J]. Journal of the Chinese Ceramic Society,2015,43(1):109-115(in Chinese).
    [23] WANG F X, XIAO S Y, SHI Y, et al. Spinel LiNixMn2-xO4 as cathode material for aqueous rechargeable lithium batteries[J]. Electrochimica Acta,2013,93:301-306.
    [24] CAI Y J, HANG Y D, WANG X C, et al. Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life[J]. Journal of Power Sources,2015,278:574-581.
    [25] ARIYOSHI K, IWATA E, KUNIYOSHI M, et al. Lithium aluminum manganese oxide having spinel-framework structure for long-life lithium-ion batteries[J]. Electrochemical and Solid-State Letters,2006,9(12):A557-A560.
    [26] WANG S M, XIANG M W, LU Y, et al. Facile solid-state combustion synthesis of Al-Ni dual-doped LiMn2O4 cathode materials[J]. Journal of Materials Science: Materials in Electronics,2020,31(8):6036-6044.
    [27] HUANG S S, WU H, CHEN P H, et al. Facile pH-mediated synthesis of morphology-tunable MnCO3 and their transformation to truncated octahedral spinel LiMn2O4 cathode materials for superior lithium storage[J]. Journal of Materials Chemistry A,2015,3(7):3633-3640.
    [28] JIANG R Y, CUI C Y, MA H Y, et al. Study on the enhanced electrochemical performance of LiMn2O4 cathode material at 55℃ by the nano Ag-coating[J]. Journal of Electroanalytical Chemistry,2015,744:69-76.
    [29] CHOU S L, WANG J Z, LIU H K, et al. Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery[J]. The Journal of Physical Chemistry C,2011,115(32):16220-16227.
    [30] DUAN Y Z, GUO J M, XIANG M W, et al. Single crystalline polyhedral LiNixMn2-xO4 as high-performance cathodes for ultralong cycling lithium-ion batteries[J]. Solid State Ionics,2018,326:100-109.
    [31] YU Y, XIANG M W, GUO J M, et al. Enhancing high-rate and elevated-temperature properties of Ni-Mg co-doped LiMn2O4 cathodes for Li-ion batteries[J]. Journal of Colloid and Interface Science,2019,555:64-71.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  858
  • HTML全文浏览量:  440
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 录用日期:  2020-12-10
  • 网络出版日期:  2020-12-15
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回