留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

树脂传递模塑成型工艺中嵌套效应引起渗透率变异的实验与数值模拟

刘文超 晏石林 李永静 何龙飞

刘文超, 晏石林, 李永静, 等. 树脂传递模塑成型工艺中嵌套效应引起渗透率变异的实验与数值模拟[J]. 复合材料学报, 2021, 38(11): 3620-3628. doi: 10.13801/j.cnki.fhclxb.20210207.002
引用本文: 刘文超, 晏石林, 李永静, 等. 树脂传递模塑成型工艺中嵌套效应引起渗透率变异的实验与数值模拟[J]. 复合材料学报, 2021, 38(11): 3620-3628. doi: 10.13801/j.cnki.fhclxb.20210207.002
LIU Wenchao, YAN Shilin, LI Yongjing, et al. Experimental and numerical simulation of permeability variation induced by nesting effect in resin transfer molding[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3620-3628. doi: 10.13801/j.cnki.fhclxb.20210207.002
Citation: LIU Wenchao, YAN Shilin, LI Yongjing, et al. Experimental and numerical simulation of permeability variation induced by nesting effect in resin transfer molding[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3620-3628. doi: 10.13801/j.cnki.fhclxb.20210207.002

树脂传递模塑成型工艺中嵌套效应引起渗透率变异的实验与数值模拟

doi: 10.13801/j.cnki.fhclxb.20210207.002
基金项目: 中央高校基本科研业务费专项资金 (2020IB002)
详细信息
    通讯作者:

    李永静,博士,实验师,研究方向为复合材料工艺力学 E-mail:whutliyongjing@163.com

  • 中图分类号: TB332

Experimental and numerical simulation of permeability variation induced by nesting effect in resin transfer molding

  • 摘要: 树脂传递模塑成型工艺(RTM)中最重要的变形模式之一是厚度方向压缩。厚度方向压缩减小了织物预成型体的厚度,使织物预成型体局部结构形式发生改变从而引起嵌套效应。嵌套效应不仅会减少织物预成型体的厚度,增加纤维的体积分数并改变孔隙率,而且相邻织物层嵌套效应具有一定的空间分散性,从而使得织物预成型体渗透率具有变异性。本文针对低黏度树脂设计了一种实验装置用以测量局部渗透率的空间分散性,随后建立了随机嵌套单胞模型,利用ANSYS/CFX有限元软件实现了单胞填充浸润的数值模拟,通过流量分析获得局部渗透率,并研究了渗透率的统计分布。通过实验结果与数值模拟结果相对比,验证数值模拟结果的可靠性。最后,基于渗透率的统计分布建立了随机渗透率场,并进行填充浸润的数值模拟,通过与传统恒定渗透率的方法进行比较,证明该方法具有更高的先进性。研究结果可以对未来RTM工艺的稳健性优化提供依据。

     

  • 图  1  织物结构及方向示意图

    Figure  1.  Schematic diagram of fabric structure and direction

    图  2  平纹玻璃纤维织物的横向压缩装置

    Figure  2.  Transverse compression unit of plain glass fabric

    图  3  多层织物平均每层厚度与压力曲线

    Figure  3.  Average thickness of multilayer fabric per layer and pressure curves

    图  4  多层织物纤维体积分数与压力曲线

    Figure  4.  Volume fraction and pressure curves of multilayer fabric fibers

    图  5  编织平纹玻璃织物径向流动实验装置图

    Figure  5.  Radial flow device schematic of plain glass fabric

    图  6  两层织物干纤维压力分布

    Figure  6.  Dry fiber pressure distribution of two layers

    图  7  单根纤维束模型

    Figure  7.  Single tow model

    图  8  两层纤维织物单胞模型

    Figure  8.  Two layers fabric unit-cell model

    图  9  两层纤维织物单胞模型计算云图

    Figure  9.  Unit-cell model computes the cloud image of two layers fabric

    图  10  两层织物实验与仿真值渗透率及其分布

    Figure  10.  Experimental and simulated values of permeability and distribution of two-layer fabric

    图  11  多层织物实验流动图像和数值模拟填充浸润图像

    Figure  11.  Experimental flow diagram of multi-layer fabric and numerical simulation of filling and infiltration diagram

    图  12  两层传统数值模拟填充浸润图像

    Figure  12.  Two layers of traditional numerical simulation of filling infiltration map

    图  13  不同时刻下双层织物填充浸润模拟与实验流动前沿进程

    Figure  13.  Simulation and experimental flow front process of two layers at different times

    图  14  双层织物模拟与实验入口压力曲线

    Figure  14.  Simulation and experiment inlet pressure curve of two layers

    表  1  平纹玻璃纤维织物的初始参数

    Table  1.   Initial parameters of plain glass fabric

    ParameterValue
    Areal density/(kg·m−2) 0.731
    Porosity of fabric 0.67
    下载: 导出CSV

    表  2  两层织物实验与仿真渗透率分布基本参数

    Table  2.   Experiment and simulation of permeability distribution of two-layer fabric

    ParameterAverage value/
    10−10 m2
    Standard deviation/
    10−10 m2
    Way
    Kx 4.43 1.12 Experiment
    Ky 4.31 1.06 Experiment
    Kx 4.24 0.97 Simulation
    Ky 4.17 0.91 Simulation
    Notes: Kx—Permeability in x direction; Ky—Permeability in y direction.
    下载: 导出CSV

    表  3  多层织物实验渗透率分布基本参数

    Table  3.   Basic parameters of permeability distribution of multilayer fabrics

    ParameterAverage value/
    10−10 m2
    Standard deviation/
    10−10 m2
    Layer
    number
    Kx 4.43 1.12 2
    Ky 4.31 1.06 2
    Kx 4.05 0.94 4
    Ky 4.14 0.92 4
    Kx 3.92 0.85 6
    Ky 3.97 0.83 6
    下载: 导出CSV
  • [1] 仲伟虹, 梁志勇, 张佐光, 等. RTM工艺及其在我国航空工业的应用前景[J]. 材料工程, 1995(1):9-11.

    ZHONG W H, LIANG Z Y, ZHANG Z G, et al. RTM and the application prospect of RTM in aviation industry[J]. Journal of Materials Engineering,1995(1):9-11(in Chinese).
    [2] 景新荣, 刘向丽, 苏霞. RTM成型工艺技术应用及加工工艺性研究浅析[J]. 橡塑技术与装备, 2015(24):132-135.

    JING X R, LIU X L, SU X. Application and processing technology research of RTM molding progress[J]. Plastics Technology and Equipment,2015(24):132-135(in Chinese).
    [3] LEBEL F, FANAEI AE, EDU R, et al. Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements[J]. International Journal of Material Forming,2014,7(1):93-116. doi: 10.1007/s12289-012-1111-x
    [4] ARBTER R, BERAUD JM, BINETRUY C, et al. Experimental determination of the permeability of textiles: A benchmark exercise[J]. Composites Part A : Applied Science and Manufacturing,2011,42(9):1157-68. doi: 10.1016/j.compositesa.2011.04.021
    [5] VERNET N, RUIZ E, ADVANI S, et al. Experimental determination of the permeability of engineering textiles: Benchmark II[J]. Composites Part A : Applied Science and Manufacturing,2014,61:172-84. doi: 10.1016/j.compositesa.2014.02.010
    [6] BODAGHI M, LOMOV S V, SIMACEK P, et al. On the variability of permeability induced by reinforcement distortions and dual scale flow in Liquid Composite Moulding: A review[J]. Composites Part A: Applied Science and Manufacturing,2019,120:188-210. doi: 10.1016/j.compositesa.2019.03.004
    [7] HOES K, DINESCU D, SOL H, et al. Study of nesting induced scatter of permeability values in layered reinforcement fabrics[J]. Composites Part A: Applied Science and Manufacturing,2004,35(12):1407-1418. doi: 10.1016/j.compositesa.2004.05.004
    [8] BODAGHI M, VANAERSCHOT A, LOMOV S V, et al. On the variability of mesoscale permeability of a 2/2 twill carbon fabric induced by variability of the internal geometry[J]. Composites Part A: Applied Science and Manufacturing,2017,101:394-407. doi: 10.1016/j.compositesa.2017.05.030
    [9] DUNGAN F D, SENOGUZ M T, SASTRY A M, et al. Simulations and experiments on low-pressure permeation of fabrics: Part I—3D M odeling of unbalanced fabric[J]. Composite Materials,2001,35(12):1250-84.
    [10] SENOGUZ M T, DUNGAN F D, SASTRY A M, et al. Simulations and experiments on low-pressure permeation of fabrics: Part II-the variable gap model and prediction of permeability[J]. Composite Materials,2001,35(14):1285-1322.
    [11] GRUJICIC M, CHITTAJALLU K M, Walsh S. Effect of shear, compaction and nesting onpermeability of the orthogonal plain-weave fabric preforms[J]. Materials Chemistry and Physics,2004,86:358-69. doi: 10.1016/j.matchemphys.2004.03.015
    [12] BELOV E B, LOMOV S V, VERPOEST I, et al. Modelling of permeability of textile reinforcements: Lattice Boltzmann method[J]. Composites Science and Technology,2004,64(7-8):1069-80.
    [13] DELERUE F, LOMOV SV, PARNAS RS, et al. Pore network modeling of permeability for textile reinforcements[J]. Polymers & Polymer Composites,2003,24(3):344-57. doi: 10.1002/pc.10034
    [14] HE L F, YAN S L, LI Y J, et al. Simulation of stochastic flow considering mesoscale permeability variability during the resin transfer molding process[J]. Polymer Composites,2020,41:1701-1710. doi: 10.1002/pc.25490
    [15] 谢翔宇, 李永静, 晏石林. 液体模塑成型工艺二维径向非饱和流动数值模拟[J]. 复合材料学报, 2018, 35(12):3386-3392.

    XIE X Y, LI Y J, YAN S L. Numerical simulation of 2-dimensional radial unsaturated flow in liquid composite molding processes[J]. Acta Materiae Compositae Sinica,2018,35(12):3386-3392(in Chinese).
    [16] 何龙飞, 晏石林, 李永静, 等. 双尺度纤维织物二维非饱和流动的数值模拟与实验[J]. 复合材料学报, 2020, 37(4):135-142.

    HE L F, YAN S L, LI Y J, et al. Numerical simulation and experiment of 2-dimensional unsaturated flow of dual-scale fiber mat[J]. Acta Materiae Compositae Sinica,2020,37(4):135-142(in Chinese).
    [17] WEI B J, ZHANG Y C, YUAN Y, et al. Online estimation and monitoring of local permeability in resin transfer molding[J]. Polymer Composites,2016,37(4):1249-1258. doi: 10.1002/pc.23290
    [18] ENDRUWEIT A, LONG A C. Influence of stochastic variations in the fibre spacing on the permeability of bi-directional textile fabrics[J]. Composites Part A Applied Science and Manufacturing,2006,37(5):679-694. doi: 10.1016/j.compositesa.2005.08.003
    [19] HUANG S, MAHADEVAN S, REBBA R. Collocation-based stochastic finite element analysis for random field problems[J]. Probabilistic Engineering Mechanics,2007,22(2):194-205. doi: 10.1016/j.probengmech.2006.11.004
    [20] ZHANG F, COSSON B, BINETRUY C, et al. Efficient stochastic simulation approach for RTM process with random fibrous permeability[J]. Composites Science and Technology,2011,71(12):1478-1485. doi: 10.1016/j.compscitech.2011.06.006
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  840
  • HTML全文浏览量:  325
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 录用日期:  2021-01-25
  • 网络出版日期:  2021-02-07
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回