留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP筋-高强钢筋/高强混凝土柱的抗震性能

王作虎 罗义康 刘杜 杨菊

王作虎, 罗义康, 刘杜, 等. CFRP筋-高强钢筋/高强混凝土柱的抗震性能[J]. 复合材料学报, 2021, 38(10): 3463-3473. doi: 10.13801/j.cnki.fhclxb.20201222.001
引用本文: 王作虎, 罗义康, 刘杜, 等. CFRP筋-高强钢筋/高强混凝土柱的抗震性能[J]. 复合材料学报, 2021, 38(10): 3463-3473. doi: 10.13801/j.cnki.fhclxb.20201222.001
WANG Zuohu, LUO Yikang, LIU Du, et al. Seismic behavior of high-strength concrete columns reinforced with CFRP tendons and high-strength steels[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3463-3473. doi: 10.13801/j.cnki.fhclxb.20201222.001
Citation: WANG Zuohu, LUO Yikang, LIU Du, et al. Seismic behavior of high-strength concrete columns reinforced with CFRP tendons and high-strength steels[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3463-3473. doi: 10.13801/j.cnki.fhclxb.20201222.001

CFRP筋-高强钢筋/高强混凝土柱的抗震性能

doi: 10.13801/j.cnki.fhclxb.20201222.001
基金项目: 国家重点研发计划 (2016YFC0701104);国家自然科学基金 (51878028;51421005)
详细信息
    通讯作者:

    罗义康,硕士,研究方向为钢筋混凝土结构及结构加固  E-mail:luoyikang@stu.bucea.edu.cn

  • 中图分类号: TU375

Seismic behavior of high-strength concrete columns reinforced with CFRP tendons and high-strength steels

  • 摘要: 为了研究高强钢筋和碳纤维增强树脂复合材料(CFRP)混合配筋/高强混凝土柱的抗震性能,对CFRP筋-高强钢筋混合配筋的高强混凝土柱进行了低周反复荷载试验和有限元分析,研究了CFRP筋的粘结条件、不同轴压比以及高强混凝土种类等参数对其抗震性能的影响。结果表明:所有的高强混合配筋高强混凝土柱均发生延性破坏;在相同条件下,高强混合配筋混凝土中分别添加了钢纤维活性粉末和钢纤维后,表现出更好的耗能能力和延性;有粘结CFRP筋混合配筋高强混凝土柱比无粘结CFRP筋混合配筋柱的变形能力和承载力分别提高了9.6%和17.1%,但是延性系数降低了22.5%;在延性破坏的条件下,随着轴压比的增加,CFRP筋-高强钢筋混合配筋柱的屈服强度和极限强度明显增大,极限位移和耗能能力也逐渐减小;高强钢筋和CFRP筋配筋率越高,高强混合配筋柱的极限承载力和变形能力越大。

     

  • 图  1  碳纤维增强树脂复合材料(CFRP)筋-高强钢筋/高强混凝土柱配筋图

    Figure  1.  Details and dimensions of high-strength concrete column with carbon fiber reinforced polymer (CFPR) tendons and high-strength steels

    图  2  试验加载装置

    Figure  2.  Loading experimental setup

    图  3  CFRP筋-高强钢筋/高强混凝土柱破坏形态

    Figure  3.  Failure modes of high-strength concrete columns with CFRP tendons and high-strength steels

    图  4  CFRP筋-高强钢筋/高强混凝土柱箍筋的应变曲线

    Figure  4.  Strain curves of high-strength concrete columns with CFRP tendons and high-strength steels stirrup

    图  5  CFRP筋-高强钢筋/高强混凝土柱滞回曲线

    Figure  5.  Hysteresis loops of high-strength concrete columns with CFRP tendons and high-strength steels

    图  6  CFRP筋-高强钢筋/高强混凝土柱骨架曲线的对比

    Figure  6.  Comparison of skeleton curves of high-strength concrete columns with CFRP tendons and high-strength steels

    图  7  CFRP筋-高强钢筋/高强混凝土柱卸载残余位移比较

    Figure  7.  Residual displacement of high-strength concrete columns with CFRP tendons and high-strength steels

    图  8  CFRP筋-高强钢筋/高强混凝土柱刚度退化曲线

    Figure  8.  Stiffness degradation curves of high-strength concrete columns with CFRP tendons and high-strength steels

    图  9  不同参数对CFRP筋-高强钢筋/高强混凝土刚度退化曲线的影响

    Figure  9.  Influence of different parameters on stiffness degeneration curves of high-strength concrete columns with CFRP tendons and high-strength steels

    图  10  CFRP筋-高强钢筋/高强混凝土柱的耗能能力

    Figure  10.  Dissipated energy of high-strength concrete columns with CFRP tendons and high-strength steels

    图  11  CFRP筋-高强钢筋/高强混凝土柱有限元分析结果

    Figure  11.  FE model Results of high-strength concrete columns with CFRP tendons and high-strength steels

    表  1  CFRP筋-高强钢筋/高强混凝土柱的主要试验参数

    Table  1.   Detailed experimental parameters of high-strength concrete columns with CFRP tendons and high-strength steels

    SpecimenLongitudinal
    steel
    Bonding condition
    of CFRP tendons
    Axial compression
    ratio
    Concrete
    type
    Whether to mix
    steel fiber
    S16/C80(N4) 4H16+4H16+218 Bonded 0.269 C80 No
    S16-CFRP10/C80(N1) 4H16+4ФH10+218 Bonded 0.120 C80 No
    S16-CFRP10/RPC(N1) 4H16+4ФH10+218 Bonded 0.120 RPC Yes
    S16-CFRP10/HSC(N1) 4H16+4ФH10+218 Bonded 0.120 C80H Yes
    S16-CFRP10/HSC*(N1) 4H16+4ФH10+218 Unbonded 0.120 C80H Yes
    S16-S16/C80(N2) 4H16+4H16+218 Bonded 0.202 C80 No
    S16-CFRP10/C80(N2) 4H16+4ФH10+218 Bonded 0.202 C80 No
    S16-CFRP10/C80*(N2) 4H16+4ФH10+218 Unbonded 0.202 C80 No
    S16-CFRP10/C80(N3) 4H16+4ФH10+218 Bonded 0.314 C80 No
    Notes: S16—High-strength steel bars; CFRP10—CFRP tendons; N1, N2, N3 and N4—Test axial compression ratios, which are 0.12, 0.202, 0.314 and 0.269; HSC—High-strength concrete with steel fiber volume of 45 kg/m3; RPC—Reactive powder concrete with steel fiber volume of 118 kg/m3; "*"—Use of unbonded CFRP bars; H symbol for high-strength steels; ФH for CFRP tendons; for HRB400 steel.
    下载: 导出CSV

    表  2  粉煤灰混凝土(RPC)配合比

    Table  2.   Mix proportion of reactive powder concrete (RPC)

    Superfine cement/kgQuartz sand/kgCement/kgSlag/kgWater/kgWater-reducing admixture/kgSteel fiber/kg
    235 1070 471 471 200 27 118
    下载: 导出CSV

    表  5  CFRP筋性能

    Table  5.   Properties of CFPR tendons

    TypeDiameter/
    mm
    Ultimate strength/
    MPa
    Modulus of
    elasticity/GPa
    CR124-10 10 2297 124
    下载: 导出CSV

    表  3  混凝土立方体实测强度

    Table  3.   Measured strength of concrete cube

    Concrete
    type
    Compressive
    strength/MPa
    Modulus of
    elasticity/GPa
    C80H 93.0 388
    C80 76.0 380
    RPC 85.7 510
    下载: 导出CSV

    表  4  钢筋性能

    Table  4.   Properties of steels

    Diameter/
    mm
    Steel
    grade
    Yield strength/
    MPa
    Ultimate strength/
    MPa
    16 HTRB600E 670.2 856.5
    10 HPB300 383.0 447.2
    18 HRB400 453.2 610.0
    下载: 导出CSV

    表  6  CFRP筋-高强钢筋/高强混凝土柱抗震试验结果

    Table  6.   Experimental results of high-strength concrete columns with CFRP tendons and high-strength steels

    SpecimenHorizontal loadPy/kNy/mmPm/kNm/mmPu/kNu/mmθuμ
    S16-CFRP10/C80(N1) Push (+) 179.0 5.2 253.4 15.7 208.4 25.2 2.8% 4.8
    Pull (−) 174.0 5.0 235.2 14.7 206.1 25.0 2.8% 5.0
    Average 176.5 5.1 244.3 15.2 207.3 25.1 2.8% 4.9
    S16-CFRP10/RPC(N1) Push (+) 221.0 6.3 280.4 18.4 227.7 25.2 2.8% 4.0
    Pull (−) 196.0 6.3 262.7 18.6 211.5 25.2 2.8% 4.0
    Average 208.5 6.3 271.6 18.5 219.6 25.2 2.8% 4.0
    S16-CFRP10/HSC(N1) Push (+) 201.5 5.9 264.4 17.6 201.3 30.2 3.4% 5.1
    Pull (−) 213.8 6.0 274.7 17.7 217.8 30.0 3.3% 5.0
    Average 207.7 5.9 269.6 17.7 209.6 30.1 3.3% 5.1
    S16-CFRP10/HSC*(N1) Push (+) 156.0 4.5 286.7 17.9 257.8 26.9 3.0% 6.0
    Pull (−) 198.5 4.5 269.2 20.9 258.4 27.0 3.0% 6.0
    Average 177.3 4.5 278.0 19.4 258.1 27.0 3.0% 6.0
    S16-S16/C80(N2) Push (+) 256.0 5.6 335.6 14.3 289.3 27.5 3.1% 4.9
    Pull (−) 226.0 5.6 330.3 15.5 269.4 27.2 3.0% 4.9
    Average 241.0 5.6 333.0 14.9 279.4 27.4 3.0% 4.9
    S16-CFRP10/C80(N2) Push (+) 250.0 7.5 335.7 14.0 232.6 24.0 2.7% 3.2
    Pull (−) 245.0 7.9 330.3 16.3 213.3 23.9 2.7% 3.0
    Average 247.5 7.7 333.0 15.2 222.9 24.0 2.7% 3.1
    S16-CFRP10/C80*(N2) Push (+) 213.0 5.5 269.2 9.8 217.9 21.8 2.4% 4.0
    Pull (−) 236.0 5.5 299.4 11.8 244.2 21.9 2.4% 4.0
    Average 224.5 5.5 284.3 10.8 231.1 21.9 2.4% 4.0
    S16-CFRP10/C80(N3) Push (+) 312.0 6.5 354.6 10.6 306.0 19.5 2.2% 3.0
    Pull (−) 296.0 6.5 337.2 16.1 282.1 19.3 2.1% 3.0
    Average 304.0 6.5 345.9 13.4 294.1 19.4 2.2% 3.0
    Notes: Py—Yield load; y—Yield displacement; Pm—Ultimate load; m—Peak displacement; Pu—Failure load; u—Ultimate displacement; μ—Displacement ductility coefficient; θu—Ultimate displacement angle.
    下载: 导出CSV

    表  7  CFRP筋-高强钢筋/高强混凝土柱的累计总耗能

    Table  7.   Cumulative dissipated energy of high-strength concrete columns with CFRP tendons and high-strength steels

    SpecimenEnergy consumption Eu/(kN·mm)
    S16-CFRP10/C80 (N1) 59818.3
    S16-CFRP10/RPC (N1) 60610.1
    S16-CFRP10/HSC (N1) 86706.2
    S16-CFRP10/HSC* (N1) 70782.1
    S16-CFRP10/HSC* (N1) 83191.8
    S16-CFRP10/C80 (N2) 43239.3
    S16-CFRP10/C80* (N2) 56671.0
    S16-CFRP10/C80 (N3) 50335.2
    下载: 导出CSV

    表  8  CFRP筋-高强钢筋/高强混凝土柱有限元模型参数

    Table  8.   FE model parametric analysis of high-strength concrete columns with CFRP tendons and high-strength steels

    SpecimenLongitudinal steelConcrete strengthNominal reinforcement ratio(%)
    S16-CFRP10/C80 (N1) 4H16+4ФH10+218 C80 1.79
    S18-CFRP10/C80 (N1) 4H18+4ФH10+218 C80 2.02
    S14-CFRP10/C80 (N1) 4H14+4ФH10+218 C80 1.58
    S12-CFRP10/C80 (N1) 4H12+4ФH10+218 C80 1.39
    S16-CFRP06/C80 (N1) 4H16+4ФH6+218 C80 1.29
    S16-CFRP14/C80 (N1) 4H16+4ФH14+218 C80 2.48
    S16-CFRP10/C70 (N1) 4H16+4ФH10+218 C70 1.79
    S16-CFRP10/C90 (N1) 4H16+4ФH10+218 C90 1.79
    S16-CFRP10/C100 (N1) 4H16+4ФH10+218 C100 1.79
    下载: 导出CSV
  • [1] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念-可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7):941-948. doi: 10.3969/j.issn.0253-374x.2011.07.001

    LV X L, CHEN Y, MAO Y J. New concept of structural seismic design: Earthquake resilient structures[J]. Journal of Tongji University (Nature Science),2011,39(7):941-948(in Chinese). doi: 10.3969/j.issn.0253-374x.2011.07.001
    [2] SUN Z, WU G, ZHANG J, et al. Experimental study on concrete columns reinforced by hybrid steel-fiber reinforced polymer (FRP) bars under horizontal cyclic loading[J]. Construction and Building Materials,2016:S0950061816316051.
    [3] 关萍, 王清湘, 赵国藩. C80高强混凝土柱延性的试验研究[J]. 大连理工大学学报, 1998, 38(3):93-99.

    GUAN P, WANG Q X, ZHAO G F. Experimental study of C80 high strength concrete columns[J]. Journal of Dalian University of Technology,1998,38(3):93-99(in Chinese).
    [4] 刘文锋, 王来其, 高彦强, 等. 高强钢筋混凝土框抗震性能试验研究[J]. 土木工程学报, 2014, 47(11):64-74.

    LIU W F, WANG L Q, GAO Y Q, et al. Experimental study on seismic behavior of high-strength reinforced concrete frame[J]. China Civil Engineering Journal,2014,47(11):64-74(in Chinese).
    [5] 苏俊省, 王君杰, 王文彪, 等. 配置高强钢筋的混凝土矩形截面柱抗震性能试验研究[J]. 建筑结构学报, 2014, 35(11):20-27.

    SU J S, WANG J J, WANG W B, et al. Comparative experimental research on seismic performance of rectangular concrete columns reinforced with high strength steel[J]. Journal of Building Structures,2014,35(11):20-27(in Chinese).
    [6] 徐伟栋. 配置高强钢筋的混凝土柱抗震性能研究[D]. 上海: 同济大学, 2007.

    XU W D. Seismic behavior of concrete columns with high strength steel bars[D]. Shanghai: Tongji University, 2007(in Chinese).
    [7] 杜修力, 王作虎, 詹界东. 预应力FRP筋混凝土梁的抗震性能试验研究[J]. 土木工程学报, 2012, 45(2):43-50.

    DU X L, WANG Z H, ZHAN J D. Experimental studies on the Seismic performance of concrete beams prestressed with FRP tendons[J]. China Civil Engineering Journal,2012,45(2):43-50(in Chinese).
    [8] 叶列平, ASAD U Q, 马千里, 等. 高强钢筋对框架结构抗震破坏机制和性能控制的研究[J]. 工程抗震与加固改造, 2006, 28(1):18-24. doi: 10.3969/j.issn.1002-8412.2006.01.005

    YE L P, ASAD U Q, MA Q L, et al. Study on failure mechanism and seismic performance of passive control RC frame against earthquake[J]. Earthquake Resistant Engineering and Retrofitting,2006,28(1):18-24(in Chinese). doi: 10.3969/j.issn.1002-8412.2006.01.005
    [9] 王作虎, 杜修力, 刘晶波. 预应力FRP筋混凝土梁在低周反复荷载下的恢复力模型[J]. 北京工业大学学报, 2012, 38(10):1509-1514.

    WANG Z H, DU X L, LIU J B. Hysteresis model of concrete beams prestressed with FRP tendons under low reversed cyclic loading[J]. Journal of Beijing University of Technology,2012,38(10):1509-1514(in Chinese).
    [10] ABDALLA H A. Evaluation of deflection in concrete members reinforced with fiber reinforced polymer (FRP) bars[J]. Composite Structures,2002,56(1):63-71. doi: 10.1016/S0263-8223(01)00188-X
    [11] JOHN N, AMIN G, GAMIL T. Concrete flexural members reinforced with fiber reinforced polymer: Design for cracking and deformability[J]. Canadian Journal of Civil Engineering,2002,29(1):125-134. doi: 10.1139/l01-085
    [12] WEE T H, CHIN M S, MANSUR M A. Stress-strain relationship of high-strength concrete in compression[J]. Journal of Materials in Civil Engineering,1996,8(2):70-76. doi: 10.1061/(ASCE)0899-1561(1996)8:2(70)
    [13] 严少华, 钱七虎, 孙伟, 等. 钢纤维高强混凝土单轴压缩下应力应变关系[J]. 东南大学学报(自然科学版), 2001, 31(2):77-80. doi: 10.3321/j.issn:1001-0505.2001.02.019

    YAN S H, QIAN Q H, SUN W, et al. Stress-strain relationship of high-strength steel fiber reinforced concrete in compression[J]. Journal of Southeast University (Natural Science Edition),2001,31(2):77-80(in Chinese). doi: 10.3321/j.issn:1001-0505.2001.02.019
    [14] 王勇威, 蒲心诚, 王志军. 单轴压力下56.3-164.9 MPa混凝土的应力-应变关系[J]. 建筑结构学报, 2005, 26(1):97-102. doi: 10.3321/j.issn:1000-6869.2005.01.015

    WANG Y W, PU X C, WANG Z J. Stress-strain response of concrete with different cubic compressive strength (56.3-164.9 MPa) under uniaxial compression[J]. Journal of Building Structures,2005,26(1):97-102(in Chinese). doi: 10.3321/j.issn:1000-6869.2005.01.015
    [15] 王志军, 蒲心诚. 超高强混凝土单轴受压性能及应力应变曲线的试验研究[J]. 重庆建筑大学学报, 2000, 22(S1):27-33.

    WANG Z J, PU X C. Experimental study on uniaxial compression properties and the stress-strain curves of UHS & HPC[J]. Journal of Chongqing Jianzhu University,2000,22(S1):27-33(in Chinese).
    [16] 吕西林, 张颖, 年学成. 钢纤维高强混凝土在单调和重复荷载作用下轴压应力-应变曲线试验研究[J]. 建筑结构学报, 2017, 38(1):135-143.

    LV X L, ZHANG Y, NIAN X C. Experimental study on stress-strain curves for high-strength steel fiber reinforced concrete under monotonic and repeated compressive loadings[J]. Journal of Building Structures,2017,38(1):135-143(in Chinese).
    [17] 徐可, 陆春华, 宣广宇, 等. 混合配筋钢纤维增强混凝土梁受弯承载力试验及理论计算[J]. 复合材料学报, 2020, 37(9):2348-2357.

    XU K, LU C H, XUAN G Y, et al. Experimental and theoretical calculation on the flexural capacity of steel fiber reinforced concrete beams with hybrid reinforcing bars[J]. Acta Materiae Compositae Sinica,2020,37(9):2348-2357(in Chinese).
    [18] 谷倩, 董格, GETAHUNE B K, 等. 喷射FRP加固震损钢筋混凝土柱抗震性能试验[J]. 复合材料学报, 2016, 33(9):1009-1019.

    GU Q, DONG G, GETAHUNE B K, et al. Test of seismic performance of earthquake damaged reinforced concrete columns strengthened with sprayed FRP[J]. Acta Materiae Compositae Sinica,2016,33(9):1009-1019(in Chinese).
    [19] 中华人民共和国住房和城乡建设部. 混凝土结构结构设计规范: GB50367—2013[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of strengthening concrete structure: GB50367—2013[S]. Beijing: China Construction Industry Press, 2010(in Chinese).
    [20] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering,1988,114(8):1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  839
  • HTML全文浏览量:  453
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 录用日期:  2020-12-14
  • 网络出版日期:  2020-12-22
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回