留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强聚醚醚酮复合材料的形状记忆效应

朱世杰 张金纳 王朝阳 杨向涛 王培 郭海伟 吴海宏 仝立勇

朱世杰, 张金纳, 王朝阳, 等. 碳纤维增强聚醚醚酮复合材料的形状记忆效应[J]. 复合材料学报, 2021, 38(9): 2839-2847. doi: 10.13801/j.cnki.fhclxb.20201229.001
引用本文: 朱世杰, 张金纳, 王朝阳, 等. 碳纤维增强聚醚醚酮复合材料的形状记忆效应[J]. 复合材料学报, 2021, 38(9): 2839-2847. doi: 10.13801/j.cnki.fhclxb.20201229.001
ZHU Shijie, ZHANG Jinna, WANG Chaoyang, et al. Shape memory effect of carbon fibers reinforced PEEK composite[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2839-2847. doi: 10.13801/j.cnki.fhclxb.20201229.001
Citation: ZHU Shijie, ZHANG Jinna, WANG Chaoyang, et al. Shape memory effect of carbon fibers reinforced PEEK composite[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2839-2847. doi: 10.13801/j.cnki.fhclxb.20201229.001

碳纤维增强聚醚醚酮复合材料的形状记忆效应

doi: 10.13801/j.cnki.fhclxb.20201229.001
基金项目: 国家自然科学基金委-河南省联合基金重点项目(U1604253);国家重点研发计划(2016YFB0101602)
详细信息
    通讯作者:

    吴海宏,博士,教授,硕士生/博士生导师,研究方向为碳纤维复合材料结构-功能一体化  E-mail:hhwu@haut.edu.cn

  • 中图分类号: TB332

Shape memory effect of carbon fibers reinforced PEEK composite

  • 摘要: 为推动形状记忆聚合物在空间等极端恶劣环境中的应用,以超薄碳纤维增强聚醚醚酮(Carbon fibers reinforced polyether-ether-ketone,CF/PEEK)预浸料为实验对象,采用薄膜叠层与热压成型工艺制备厚度为0.036 mm超薄预浸料的层合片材,研究了其在热应力驱动下的形状记忆行为。结果表明,在320℃加热-冷却热循环温度场的作用下,CF/PEEK复合材料超薄层合板的初始变形的形状回复率近似可达100%,当变形循环达到100次时,其形状回复率仍然可以保持在90%以上。此外,根据层合板变形的温度与应力-应变关系,解释了CF/PEEK复合材料的热应力驱动变形机制。在此基础上,改变CF/PEEK层合板厚度进行仿真设计,实现了初始状态与深海珊瑚形状、立方体、灯笼草形状之间的变形与回复。利用记忆变形产生的机械夹紧力,完成了硬币抓取实验,验证了CF/PEEK复合材料在主动变形结构应用的可行性。

     

  • 图  1  纤维增强聚醚醚酮(CF/PEEK)复合材料超薄层合板试样在不同加热-冷却热循环温度场作用下的形状记忆效应(SME)示意图: (a)初始形状升温过程展开示意图;(b) 最终形状冷却过程卷曲示意图

    Figure  1.  Schematic diagram of shape memory effect (SME) of carbon fibers reinforced polyether-ether-ketone (CF/PEEK) composite ultra-thin laminates under the action of different heating-cooling thermal cycling temperature field: (a) Expansion diagram of original shape specimen under heating process; (b) Curl diagram of actuated shape specimen under cooling process

    图  2  CF/PEEK复合材料超薄层合板试样的回复率随温度变化曲线

    Figure  2.  Recovery rate curve of CF/PEEK composite ultra-thin laminate samples with temperature change

    图  3  CF/PEEK复合材料超薄层合板试样在320℃加热-冷却温度场下不同循环次数的可重复率曲线

    Figure  3.  Repeatability rate of CF/PEEK composite ultra-thin laminate sample in different cycle times under the action of heating-cooling thermal cycle temperature field at 320℃

    图  4  CF/PEEK复合材料超薄层合板热应力驱动机制

    Figure  4.  Thermal stress drive mechanism of CF/PEEK composite ultra-thin laminate

    图  5  CF/PEEK复合材料超薄层合板温度与热应力-应变的关系

    Figure  5.  Relationship between temperature and thermal stress-strain of CF/PEEK composite ultrathin laminates

    图  6  3D形状记忆结构设计: (a) 0.036 mm厚度海星状试样;(b) 0.096 mm厚度十字状试样;(c) 0.156 mm厚度十字状试样;(d) 0.156 mm厚度海星状试样

    Figure  6.  3D shape memory structure design: (a) Starfish sample with 0.036 mm thickness; (b) Cross sample with 0.096 mm thickness; (c) Cross sample with 0.156 mm thickness; (d) Starfish sample with 0.156 mm thickness

    图  7  0.156 mm厚度海星状形状记忆抓手硬币抓取模型设计与实物图:(a) 320℃高温;(b)冷却过程;(c)室温

    Figure  7.  Design and real picture of the coin grasping model for starfish shape memory with 0.156 mm thickness: (a) 320℃ high temperature; (b) Cooling process; (c) At room temperature

    表  1  CF/PEEK复合材料超薄层合板试样在不同加热温度场作用下的SME相关性能参数

    Table  1.   SME performance parameters of CF/PEEK composite ultra-thin laminates under the action of different heating temperature fields

    Simulation
    Heating temperature/℃ 25 180 210 240 270 300 320
    Time/s 0 10.5 12.5 14.5 16.5 18.5 20
    Developed length/mm 0 1.85 3.42 7.76 9.56 13.17 15.53
    Thermal stress/MPa 2.96 1.80 1.72 1.45 1.34 1.02
    Thermal strain/10−3 14.9 24.3 29.2 31.5 33.7 35.1
    下载: 导出CSV

    表  2  CF/PEEK复合材料超薄层合板试样在不同冷却温度场作用下的SME相关性能参数

    Table  2.   SME performance parameters of CF/PEEK composite ultra-thin laminates under the action of different cooling temperature fields

    Simulation
    Cooling temperature/℃ 320 300 270 240 210 180 25
    Time/s 4 3.7 3.3 2.9 2.5 2.1 0
    Crimp diameter/mm $\infty$ 11.2 4.9 3.7 3.2 2.7 2.3
    Thermal stress/MPa 1.02 1.34 1.45 1.72 1.80 2.96
    Thermal strain/10−3 −34.1 −32.3 −30.4 −28.4 −23.4 −14.5
    下载: 导出CSV
  • [1] HARPER M, HABIB M, MICHAEL S, et al. Various shape memory effects of stimuli-responsive shape memory polymers[J]. Smart Material Structures.,2013,22:093001. doi: 10.1088/0964-1726/22/9/093001
    [2] HUANG W M, DING Z, WANG C C, et al. Shape memory materials[J]. Materials,2010,13:54-61.
    [3] 郭晓岗. 形状记忆聚合物及其复合材料的力学行为研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    GUO Xiaogang. The mechanical behaviors of shape memory polymers and their composites[D]. Harbin: Harbin Engineering University, 2016(in Chinese).
    [4] SHI Ying. High temperature shape memory polymers &ionomer modified asphalts[D]. The University of Akron, 2013.
    [5] MADBOULYSA, LENDLEIN A. Shape-memory polymer composites[J]. Advances in Polymer Science,2009:06-07.
    [6] 谭巧. 形状记忆环氧聚合物及其复合材料的典型力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    TAN Q. Typical mechanical behavior of epoxy shape memory polymer and its composite[D]. Harbin: Harbin Engineering University, 2015(in Chinese).
    [7] OHKI Takeru, NI Qingqing, OHSAKO Norihito, et al. Mechanical and shape memory behavior of composites with shape memory polymer[J]. Composites Part A: Applied Science and Manufacturing,2004,35:1065-1073. doi: 10.1016/j.compositesa.2004.03.001
    [8] LIU Y J, LV H B, LAN X, et al. Review of electro-active shape-memory polymer composite[J]. Composites Science and Technology,2009,69:2064-2068. doi: 10.1016/j.compscitech.2008.08.016
    [9] LENDLEIN A, JIANG H Y, JUNGER O, et al. Light-induced shapememory polymers[J]. Nature,2005,434:879-882. doi: 10.1038/nature03496
    [10] HUANG W M, YANG B, ZHAO Y, et al. Thermo-moisture responsive polyurethane shape-memory polymer and composites: A review[J]. Journal of Materials Chemistry,2010,20:3367-3381. doi: 10.1039/b922943d
    [11] LIU Y, GALL K, DUNN M L, et al. Thermomechanics of shape memory polymer nanocomposites[J]. Mechanics of Materials,2004,36:929-940. doi: 10.1016/j.mechmat.2003.08.012
    [12] BEHL M, LENDLEIN A. Shape-memory polymers[J]. Materials Today,2007,10:20-28.
    [13] JAE W C, JEONG W K, YONG C J, et al. Electroactive shape-memory polyurethane composites incorporating carbon nanotubes[J]. Macromolecular Rapid Communications,2005,26:412-416. doi: 10.1002/marc.200400492
    [14] KOERNER H, PRICE G, PEARCE N A, et al. Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers[J]. Nature Materials, 2004, 3(2): 115-120.
    [15] JIANGH Y, KELCH S, LENDLEINA. Polymers move in response to light[J]. Advanced Materials,2006,18:1471-1475. doi: 10.1002/adma.200502266
    [16] OSADA Y, MATSUDA A. Shape memory in hydrogels[J]. Nature, 1995, 376(6537): 219.
    [17] HU Xiaobo, ZHOU Jing. Programming temporal shape shifting[J]. Nature Communications, 7: 12919.
    [18] LIU C, QIN H, MATHERP T. Review of progress in shape-memory polymers[J]. Journal of Materials Chemistry,2007,17(16):1543-1558. doi: 10.1039/b615954k
    [19] HUANG W M, YANG B, AN L, et al. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism[J]. Applied Physics Letters,2005,86:114105. doi: 10.1063/1.1880448
    [20] LENDLEIN A, LANGER R. Biodegradable, elastic shape-memory polymers for potential biomedical applications[J]. Science,2002,296(5573):1673-1676. doi: 10.1126/science.1066102
    [21] SCHUH C, GARNIER L, KRAFT A, et al. Shape-memory properties of segmented polymers containing aramid hard segments and polycaprolactone soft segments[J]. Polymers,2010,2:71-85. doi: 10.3390/polym2020071
    [22] YUAN C, DUNNM L, QIH J. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates[J]. Smart Material Structures,2017:1-23.
    [23] CHEN Shaojun, HU Jinlian, ZHUO Haitao, et al. Two-way shape memory effect in polymer laminates[J]. Materials Letters,2008,62:4088-4090. doi: 10.1016/j.matlet.2008.05.073
    [24] STOYCHEV G, PURETSKIY N, IONOV L. Self-folding all-polymer thermoresponsive microcapsules[J]. Soft Matter,2011,7:3277-3279. doi: 10.1039/c1sm05109a
    [25] 张蕊瑞. 形状记忆变刚度空间可展开结构的设计[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    ZHANG Ruixue. Design on variable stiffness space deployable structure based on shape memory polymer composite[D]. Harbin: Harbin Engineering University, 2011(in Chinese).
    [26] LENG J S, LAN X, HUANG W M, et al. Electrical conductivity of shape memory polymer embedded with micro Ni chains[J]. Applied Physics Letters,2008,92:014104. doi: 10.1063/1.2829388
    [27] LENG J S, LV H B, LIU Y J, et al. Electro-activate shape memorypolymer filledwith nanocarbon particles and short carbon fibers[J]. Applied Physics Letters,2007,91:144105. doi: 10.1063/1.2790497
    [28] LAN X, WANG X H, LIU Y J, et al. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge[J]. Smart Materials Structures,2009,18:024002. doi: 10.1088/0964-1726/18/2/024002
    [29] KEN G, MARTIN L D, LIU Y P, et al. Shape memory polymer nanocomposites[J]. Acta Materialia,2002,50:5115-5126. doi: 10.1016/S1359-6454(02)00368-3
    [30] NI Qingqing. Bending behavior of shape memory polymer based laminates[J]. Composite Structures,2007,78:153-161. doi: 10.1016/j.compstruct.2005.08.029
    [31] LIU Yayun, YU Xiang, ZHANG Zhong, et al. Carbon fiber reinforced shape memory epoxy composites with superior mechanical performances[J]. Composites Science and Technology,2019,177:49-56. doi: 10.1016/j.compscitech.2019.04.014
    [32] 冷劲松, 兰鑫. 形状记忆聚合物复合材料及其在空间可展开结构中的应用[J]. Journal of Astronautics, 2010(31):950-955.

    LENG J S, LAN X. Shape memory polymers composites and their applications in deployable structures[J]. Journal of Astronautics,2010(31):950-955(in Chinese).
    [33] JOHANSENB B, LOVALD S, et al. Applications of polyetheretherketone in arthroscopy[J]. PEEK Biomaterials Handbook,2019:291-300.
    [34] DAO T D, HA N S, GOON S, et al. Design, fabrication, and bending test of shape memory polymer composite hinges for space deployable structures[J]. Journal of Intelligent Material Systems and Structures,2017:1-15.
    [35] WU Jiangtao, YUAN Chao, DING Zhen, et al. Multi-shape active composites by 3D printing of digital shape memory polymers[J]. Scientific Reports, 6, 24224.
    [36] ZENG Hao, LENG Jinsong, GU Jianping, et al. Modeling the thermomechanical behaviors of short fiber reinforced shape memory polymer composites[J]. International Journal of Mechanical Sciences,2020,166:105212. doi: 10.1016/j.ijmecsci.2019.105212
    [37] YANG Chuncheng, WANG Bingjie, LI Dichen, et al. Modelling and characterisation for the responsive performance of CF/PLA and CF/PEEK smart materials fabricated by 4D printing[J]. Virtual and Physical Prototyping,2017,12(1):69-76. doi: 10.1080/17452759.2016.1265992
    [38] 杨序纲. 复合材料界面[M]. 北京: 化学工业出版社, 2010, 182.

    YANG Xugang. Composite interface[M]. Beijing: Chemical Industry Press, 2010, 182.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1435
  • HTML全文浏览量:  440
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 修回日期:  2020-12-06
  • 录用日期:  2020-12-18
  • 网络出版日期:  2020-12-29
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回