留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双屏蔽(B4C-W)/6061Al层状复合板设计与性能

连俊杰 刘润爱 陈洪胜 王文先 杨涛 郑凡林

连俊杰, 刘润爱, 陈洪胜, 等. 双屏蔽(B4C-W)/6061Al层状复合板设计与性能[J]. 复合材料学报, 2021, 38(10): 3387-3393. doi: 10.13801/j.cnki.fhclxb.20201225.001
引用本文: 连俊杰, 刘润爱, 陈洪胜, 等. 双屏蔽(B4C-W)/6061Al层状复合板设计与性能[J]. 复合材料学报, 2021, 38(10): 3387-3393. doi: 10.13801/j.cnki.fhclxb.20201225.001
LIAN Junjie, LIU Run’ai, CHEN Hongsheng, et al. Design and properties of double shielding (B4C-W)/6061Al laminated composite board[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3387-3393. doi: 10.13801/j.cnki.fhclxb.20201225.001
Citation: LIAN Junjie, LIU Run’ai, CHEN Hongsheng, et al. Design and properties of double shielding (B4C-W)/6061Al laminated composite board[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3387-3393. doi: 10.13801/j.cnki.fhclxb.20201225.001

双屏蔽(B4C-W)/6061Al层状复合板设计与性能

doi: 10.13801/j.cnki.fhclxb.20201225.001
基金项目: 国家自然科学基金(51805358;51775366);山西省晋中市重点研发计划(Y201023);自然科学基金 (201901D111057);山西省青年科技研究基金(201801D221122);山西省高校学校科技创新项目(RD1900000633)
详细信息
    通讯作者:

    陈洪胜,博士,副教授,硕士生导师,研究方向为先进金属基复合材料制备及成形技术  E-mail:chenhongsheng@tyut.edu.cn

  • 中图分类号: TB333

Design and properties of double shielding (B4C-W)/6061Al laminated composite board

  • 摘要: 基于B4C和W良好的屏蔽中子和γ射线性能,采用6061铝合金作为基体,设计了一种新型双屏蔽(B4C-W)/6061Al层状复合材料,通过放电等离子烧结后加热轧制成板材,对制备的复合材料微观组织和力学性能进行了研究。结果表明,屏蔽组元B4C和W颗粒均匀地分布在6061Al基体中,层界面、B4C/Al、W/Al异质界面之间结合良好,无空隙和裂纹。在颗粒与基体界面处形成扩散层,扩散层的厚度约为6 μm (W/Al)和4 μm (W/Al)。轧制态的(B4C-W)/6061Al层状复合板的屈服强度(109 MPa)和极限抗拉强度(245 MPa)明显优于烧结态的复合材料,但断裂韧性降低。强度提高的原因主要是轧制后颗粒的二次分布、均匀性及界面结合强度提高,基体合金的晶粒尺寸减小,位错密度增加。层状复合板的断裂方式为基体合金的韧性断裂和颗粒的脆性断裂。

     

  • 图  1  B4C/Al中元素在不同中子区域的中子吸收截面[17]

    Figure  1.  Neutron absorption cross section of elements at different neutron regions in the B4C/Al system[17]

    图  2  B4C/Al和W/Al材料的屏蔽性能

    Figure  2.  Shielding performance of B4C/Al and W/Al materials

    图  3  (B4C-W)/Al层状复合材料中,中子n和γ与B4C和W相互作用的示意图

    Figure  3.  Schematic diagrams showing neutrons n and γ interactions with B4C and W in (B4C-W)/Al laminar composites

    图  4  放电等离子烧结(SPS)-烧结(B4C-W)/6061Al层状复合材料示意图

    Figure  4.  Schematic sketch of spark plasma sintered (SPS)-sintered (B4C-W)/6061Al laminar composite

    图  5  SPS-烧结(B4C-W)/6061Al层状复合材料不同层的SEM图像

    Figure  5.  SEM images of different layers of SPS-sintered (B4C-W)/6061Al laminar composites ((a) Type A; (b) Layer interface of type A; (c) Type B; (d) Layer interface of type B)

    图  6  SPS-烧结(B4C-W)/6061Al层状复合材料试样热轧前后的SEM图像

    Figure  6.  SEM images of SPS-sintered (B4C-W)/6061Al laminar composite samples before and after hot rolling ((a) As SPSed B4C/Al layer; (b) As SPSed W/Al layer; (c) As rolled (B4C-W)/Al layer; (d) As rolled W/Al interface)

    图  7  (B4C-W)/6061Al层状屏蔽复合材料的SEM图像和EDS能谱

    Figure  7.  SEM images and EDS spectrum of (B4C-W)/6061Al laminar shielding composites

    图  8  颗粒与基体界面EDS能谱图

    Figure  8.  EDS spectrum of interface between the particles and matrix

    图  9  (B4C-W)/6061Al层状复合材料室温力学性能

    Figure  9.  Room temperature mechanical properties of (B4C-W)/6061Al laminar composites

    图  10  轧制(B4C-W)/6061Al层状复合材料拉伸试验后的断口

    Figure  10.  Fracture surfaces after the tensile test of as rolled (B4C-W)/6061Al laminar composites((a) B4C/6061Al layer; (b) Interface debonding; (c) W/6061Al layer; (d) Particles fracture)

    表  1  6061Al合金的化学成分

    Table  1.   Chemical composition of 6061Al alloy wt%

    SiFeCuMnMgCrZnTiAl
    0.6 0.7 0.25 0.15 0.8 0.1 0.25 0.15 Rest
    下载: 导出CSV

    表  2  W粉的化学成分

    Table  2.   Chemical composition of W powder wt%

    AlCCdCoCrCuW
    0.001 0.003 0.003 0.003 0.002 0.003 Rest
    下载: 导出CSV

    表  3  B4C的化学成分

    Table  3.   Chemical composition of B4C wt%

    BCCaFeSiFCl
    80.0 18.1 0.3 1.0 0.5 0.025 0.075
    下载: 导出CSV
  • [1] JO M C, CHOI J H, YOO J, et al. Novel dynamic compressive and ballistic properties in 7075-T6 Al-matrix hybrid composite reinforced with SiC and B4C particulates[J]. Composites Part B: Engineering,2019,174:107041.
    [2] XIE M S, WANG Z, ZHANG G Q, et al. Microstructure and mechanical property of bimodal-size metallic glass particle-reinforced Al alloy matrix composites[J]. Alloys & Compounds,2020,814:152317.
    [3] CHEN Hongsheng, NIE Huihui, ZHOU Jun, et al. Microstructure and mechanical properties of B4C/6061Al neutron absorber composite tube fabricated by spark plasma sintering and hot spinning[J]. Nuclear Materials,2019,517:393-400.
    [4] DOU Yuhai, LIU Yong, LIU Yanbin, et al. Friction and wear behaviors of B4C/6061Al composite[J]. Materials & Design,2014,60:669-677.
    [5] PARK Jinju, HONG Sungmo, LEE Minku, et al. Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al–B4C composite material via hot isostatic pressing[J]. Nuclear Engineering & Design,2015,282:1-7.
    [6] YUAN M, ZHANG D C, TAN C G, et al. Microstructure and properties of Al-based metal matrix composites reinforced by Al60Cu20Ti15Zr5 glassy particles by high pressure hot pressing consolidation[J]. Materials Science & Engineering A,2014,590:301-306.
    [7] VINTILA R, CHAREST A, DREW R A L, et al. Synthesis and consolidation via spark plasma sintering of nanostructured Al-5356/B4C composite[J]. Materials Science and Engineering: A,2011,528:4395-4407. doi: 10.1016/j.msea.2011.02.079
    [8] SONG Xiaoyan, LIU Xuemei, ZHANG Jiuxing. Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering[J]. Journal of the American Ceramic Society,2006,89:494-500. doi: 10.1111/j.1551-2916.2005.00777.x
    [9] ZHANG G P, MEI Q S, CHEN F, et al. Production of a high strength Al/(TiAl3 + Al2O3) composite from an Al-TiO2 system by accumulative roll-bonding and spark plasma sintering[J]. Materials Science and Engineering,2019,752:192-198.
    [10] MAHMOUD S SOLIMANA, MAGDY M, et al. Effect of tensile strain rate on high-temperature deformation and fracture of rolled Al-15vol% B4C composite[J]. Materials Science & Engineering A,2019,749:129-136.
    [11] MAZAHERI Y, MERATIAN M, EMADI R, et al. Comparison of microstructural and mechanical properties of Al–TiC, Al–B4C and Al–TiC–B4C composites prepared by casting techniques[J]. Materials Science & Engineering A,2013,560:278-287.
    [12] GAO Xiang, ZHANG Xuexi, GENG Lin. Strengthening and fracture behaviors in SiCp/Al composites with network particle distribution architecture[J]. Materials Science & Engineering,2019,740:353-362.
    [13] SHOROWORDI K M, LAOUI T, HASEEB A S M A, et al. Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: A comparative study[J]. Journal of Materials Processing Technology,2003,142(3):738-743. doi: 10.1016/S0924-0136(03)00815-X
    [14] WANG Kaikai, LI Xiaopei, LI Qiulin, et al. Hot deformation behavior and microstructural evolution of particulate-reinforced AA6061/B4C composite during compression at elevated temperature[J]. Materials Science & Engineering,2017,696:248-256.
    [15] WANG Jie, ZHENG Tengfei, GAO Yong, et al. Preparation and properties characterization of a novel soft robots partially made of silicone/W-based composites for gamma ray shielding[J]. Progress in Nuclear Energy,2020,130:130531.
    [16] LI Y Z, WANG Q Z, WANG W G, et al. Effect of interfacial reaction on age-hardening ability of B4C/6061Al compo-sites[J]. Materials Science and Engineering: A,2015,620:445-453. doi: 10.1016/j.msea.2014.10.025
    [17] LI Yuli, WANG Wenxian, ZHOU Jun, et al. 10B areal density: A novel approach for design and fabrication of B4C/6061Al neutron absorbing materials[J]. Journal of Nuclear Materials,2017,487(Complete):238-246.
    [18] LUO Guoqiang, WU Jialu, XIONG Shuya, et al. Microstructure and mechanical behavior of AA2024/B4C composites with a network reinforcement architecture[J]. Journal of Alloys & Compounds,2017,701(Complete):554-561.
    [19] HUANG Guoqiang, SHEN Yifu, GUO Rui, et al. Fabrication of tungsten particles reinforced aluminum matrix compo-sites using multi-pass friction stir processing: Evaluation of microstructural, mechanical and electrical behavior[J]. Materials Science and Engineering: A,2016,674:504-513.
    [20] DENG Kunkun, SHI Juyan, WANG Cuiju, et al. Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite[J]. Composites,2012,43(8):1280-1284. doi: 10.1016/j.compositesa.2012.03.007
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  625
  • HTML全文浏览量:  349
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 录用日期:  2020-12-12
  • 网络出版日期:  2020-12-25
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回