留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维复合材料超声振动辅助RTM工艺的浸润特性

杨旭静 张良胜 李茂君 王开禹 方文俊

杨旭静, 张良胜, 李茂君, 等. 碳纤维复合材料超声振动辅助RTM工艺的浸润特性[J]. 复合材料学报, 2021, 38(12): 4161-4171. doi: 10.13801/j.cnki.fhclxb.20210302.007
引用本文: 杨旭静, 张良胜, 李茂君, 等. 碳纤维复合材料超声振动辅助RTM工艺的浸润特性[J]. 复合材料学报, 2021, 38(12): 4161-4171. doi: 10.13801/j.cnki.fhclxb.20210302.007
YANG Xujing, ZHANG Liangsheng, LI Maojun, et al. Impregnation characteristics of carbon fiber composite during ultrasonic vibration assisted RTM process[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4161-4171. doi: 10.13801/j.cnki.fhclxb.20210302.007
Citation: YANG Xujing, ZHANG Liangsheng, LI Maojun, et al. Impregnation characteristics of carbon fiber composite during ultrasonic vibration assisted RTM process[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4161-4171. doi: 10.13801/j.cnki.fhclxb.20210302.007

碳纤维复合材料超声振动辅助RTM工艺的浸润特性

doi: 10.13801/j.cnki.fhclxb.20210302.007
基金项目: 国家自然科学基金(51875188;51905163)
详细信息
    通讯作者:

    李茂君,博士,副教授,硕士生导师,研究方向为复合材料加工与制造 E-mail:maojunli@hnu.edu.cn

  • 中图分类号: TB332

Impregnation characteristics of carbon fiber composite during ultrasonic vibration assisted RTM process

  • 摘要: 研究了织物类型、纤维体积分数和超声振动对树脂在碳纤维织物中流动特性的影响规律,设计了超声振动辅助RTM工艺过程中单向渗透率测量装置,开展了16组渗透率测试实验,并结合COMSOL软件仿真分析了织物中的树脂流动特性。研究表明,在相同纤维体积分数水平下,斜纹编织物的纤维束间隙通道比平纹织物的更宽,2/2斜纹编织织物渗透率比平纹织物提高了约21.5%。纤维体积分数与织物渗透率呈负相关,其函数关系与半经验公式Kozeny-Carman(KC)方程吻合较好。树脂流动过程中加入超声振动,其超声空化效应、加速度效应和微射流效应作用于纤维丝束表面,提高了织物渗透率约58.2%。有限元仿真模拟了椭圆形和近矩形纤维束截面设计的织物模型的流动过程,结果发现近矩形纤维束截面高流速区域范围更广,流体向纤维布夹层浸渍的速度分量更大。超声作用于织物纤维可能带动纤维丝束蠕动,使纤维束截面趋于近矩形状,从而提高了树脂对纤维织物的浸润性。上述研究结果对优化碳纤维复合材料成型工艺和成型性能具有一定的指导意义。

     

  • 图  1  平纹纤维布和斜纹纤维布尺寸

    Figure  1.  Size of plain and twill carbon fiber fabrics

    图  2  树脂在织物中的渗透过程

    Figure  2.  Permeation of resin into fabric

    Pin—Inlet pressure; P0—Outlet pressure

    图  3  多孔质材料在双尺度流动中的孔隙形成原理

    Figure  3.  Principle of pore formation of porous materials in two-scale flow

    图  4  实验测试装置示意图

    Figure  4.  Schematic diagram of experimental test device

    图  5  纤维束横截面的幂椭圆结构示意图

    Figure  5.  Schematic diagram of power ellipse structure of fiber bundle cross section

    n—Exponent; h—Fiber bundle height; L—Fiber bundle spacing; 2R—Fiber bundle width

    图  6  织物模型的边界条件

    Figure  6.  Boundary conditions of the fabric model

    P1—Inlet pressure; P2—Outlet pressure

    图  7  流动前沿数据集

    Figure  7.  Flow frontier data set

    图  8  不同纤维体积分数(41.1vol%、47vol%、54.9vol%、60.9vol%)的织物渗透率

    Figure  8.  Permeability of plain weave fabrics with different fiber volume fractions (41.1vol%, 47vol%, 54.9vol%, 60.9vol%)

    图  9  织物压缩过程的三个阶段

    Figure  9.  Three stages in the fabric compression process

    图  10  因子${x_{V_{\rm{f}}}}$与渗透率的函数关系

    Figure  10.  Functional relationship between factor ${x_{V_{\rm{f}}}}$ and permeability

    图  11  气泡空隙在超声振动下的空化链式演变图

    Figure  11.  Cavitation chain evolution diagram of voids under ultrasonic vibration

    P0—Atmospheric pressure; Pg—Pressure in bubble; R—Radius of the bubble; PI—Ultrasonic pressure; Pσ—Additional pressure casued by surface tension

    图  12  同一时刻的流动前沿(54.9vol%平纹织物)

    Figure  12.  Flow front at the same moment (54.9vol% plain weave fabric)

    图  13  两种纤维束织物模型(Vf=41.1vol%)在不同位置处的速度云图和流向分布

    Figure  13.  Velocity nephogram and flow direction distribution at different locations of two fiber bundle models (Vf =41.1vol%)

    图  14  在4种纤维体积分数(41.1vol%、47vol%、54.9vol%、60.9vol%)下的平纹和斜纹织物的实测渗透率和仿真渗透率及对应的KC线性拟合线

    Figure  14.  Measured and simulated permeability of plain and twill fabrics at four fiber volume fractions (41.1vol%, 47vol%, 54.9vol%, 60.9vol%), with the corresponding KC linear fitting lines

    表  1  碳纤维布的主要参数

    Table  1.   Main parameters of carbon fiber fabric

    ρs/(g·m−2)ft/Krf/μmh/mm
    480 12 3.4 0.52
    Notes: ρs—Area density; ft—Fiber tow type; rf —Radius of a single fiber filament; h—Thickness of fabric.
    下载: 导出CSV

    表  2  实验设计组及详细参数

    Table  2.   Experimental design group and detailed parameters

    ParameterLevel
    Fabric type Plain Twill
    Ultrasonic vibration Yes No
    Fiber volume fraction/vol% 41.1, 47.0, 54.9, 60.9
    下载: 导出CSV

    表  3  编织物不同纤维体积分数下的平方流动前沿(SFF)曲率

    Table  3.   Squared flow front (SFF) curvature of fabrics with different fiber volume fractions

    Vf/vol%splainstwillrg/%
    41.1 0.00751 0.00957 21.53
    47.0 0.00469 0.00558 15.95
    54.9 0.00204 0.00294 30.61
    60.9 0.00132 0.00161 18.01
    Notes: Vf—Fiber volume fraction; splain—Slope of plain fabric; stwill—Slope of twill fabric; rg—Relative growth rate of twill fabrics relative to plain weave fabrics.
    下载: 导出CSV

    表  4  拟合参数a的数值计算结果

    Table  4.   Numerical results of the fitting parameter a

    PlainUltrasound-plainTwillUltrasound-twill
    a 0.8356 1.3305 1.0535 1.6749
    R2 0.9956 0.9956 0.9972 0.9963
    下载: 导出CSV
  • [1] MATSUZAKI R, KOBAYASHI S, TODOROKI A, et al. Full-field monitoring of resin flow using an area-sensor array in a VARTM process[J]. Composites Part A: Applied Science and Manufacturing,2011,42(5):550-559. doi: 10.1016/j.compositesa.2011.01.014
    [2] BODAGHI M, LOMOV S V, SIMACEK P, et al. On the variability of permeability induced by reinforcement distortions and dual scale flow in liquid composite moulding: A review[J]. Composites Part A: Applied Science and Manufacturing,2019,120:188-210. doi: 10.1016/j.compositesa.2019.03.004
    [3] BODAGHI M, CRISTÓVÃO C, GOMES R, et al. Experimental characterization of voids in high fibre volume fraction composites processed by high injection pressure RTM[J]. Composites Part A: Applied Science and Manufacturing,2016,82:88-99. doi: 10.1016/j.compositesa.2015.11.042
    [4] PUCCI M F, LIOTIER P J, DRAPIER S. Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[J]. Composites Part A: Applied Science and Manufacturing,2015,77:133-141. doi: 10.1016/j.compositesa.2015.05.031
    [5] NABOVATI A, LLEWELLIN E W, SOUSA A C M. A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method[J]. Composites Part A: Applied Science and Manufacturing,2009,40(6):860-869.
    [6] GERVAIS P C, BARDIN-MONNIER N, THOMAS D. Permeability modeling of fibrous media with bimodal fiber size distribution[J]. Chemical Engineering Science,2012,73:239-248. doi: 10.1016/j.ces.2012.01.040
    [7] WOUDBERG S. Permeability prediction of an analytical pore-scale model for layered and isotropic fibrous porous media[J]. Chemical Engineering Science,2017,164:232-245. doi: 10.1016/j.ces.2017.01.061
    [8] POTLURI P, SAGAR T V. Compaction modelling of textile preforms for composite structures[J]. Composite Structures,2008,86(1):177-185.
    [9] HAN S H, CHO E J, LEE H C, et al. Study on high-speed RTM to reduce the impregnation time of carbon/epoxy composites[J]. Composite Structures,2015,119:50-58. doi: 10.1016/j.compstruct.2014.08.023
    [10] AMERI E, LEBRUN G, LAPERRIÈRE L. In-plane permeability characterization of a unidirectional flax/paper reinforcement for liquid composite molding processes[J]. Composites Part A: Applied Science and Manufacturing,2016,85:52-64. doi: 10.1016/j.compositesa.2016.03.002
    [11] PEARCE N R L, SUMMERSCALES J, GUILD F J. Improving the resin transfer moulding process for fabric-reinforced composites by modification of the fabric architecture[J]. Composites Part A: Applied Science and Manufacturing,2000,31(12):1433-1441. doi: 10.1016/S1359-835X(00)00140-8
    [12] RIEBER G, JIANG J, DETER C, et al. Influence of textile parameters on the in-plane permeability[J]. Composites Part A: Applied Science and Manufacturing,2013,52:89-98. doi: 10.1016/j.compositesa.2013.05.009
    [13] MARTIN B, COMAS-CARDONA S, BINETRUY C, et al. Influence of fabrics’ design parameters on the morphology and 3D permeability tensor of quasi-unidirectional non-crimp fabrics[J]. Composites Part A: Applied Science and Manufacturing,2016,90:470-479. doi: 10.1016/j.compositesa.2016.08.013
    [14] SYERKO E, BINETRUY C, COMAS-CARDONA S, et al. A numerical approach to design dual-scale porosity composite reinforcements with enhanced permeability[J]. Materials & Design,2017,131:307-322.
    [15] GODBOLE M G, PURANDARE R, HARSHE R, et al. Influence of filament distribution on transverse tow permeability: Model predictions and experimental validation[J]. Composites Part A: Applied Science and Manufacturing,2019,118:150-161. doi: 10.1016/j.compositesa.2018.12.024
    [16] BODAGHI M, VANAERSCHOT A, LOMOV S V, et al. On the variability of mesoscale permeability of a 2/2 twill carbon fabric induced by variability of the internal geometry[J]. Composites Part A: Applied Science and Manufacturing,2017,101:394-407. doi: 10.1016/j.compositesa.2017.05.030
    [17] BODAGHI M, VANAERSCHOT A V, LOMOV S, et al. On the stochastic variations of intra-tow permeability induced by internal geometry variability in a 2/2 twill carbon fabric[J]. Composites Part A: Applied Science and Manufacturing,2017,101:444-458. doi: 10.1016/j.compositesa.2017.07.008
    [18] ENDRUWEIT A, ZENG X, MATVEEV M, et al. Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements[J]. Composites Part A: Applied Science and Manufacturing,2018,104:139-150. doi: 10.1016/j.compositesa.2017.10.020
    [19] 刘丽, 张志谦, 黄玉东, 等. 超声作用对芳纶/环氧浸润行为的影响[J]. 材料科学与工艺, 2002, 10(1):69-72.

    LIU Li, ZHANG Zhiqian, HUANG Yudong, et al. Effect of ultrasound on wetting behavior between aramid fiber and epoxy resin[J]. Materials Science & Technology,2002,10(1):69-72(in Chinese).
    [20] 刘丽, 张翔, 黄玉东, 等. 超声作用对芳纶纤维表面性质的影响[J]. 复合材料学报, 2003, 20(2):35-40.

    LIU Li, ZHANG Xiang, HUANG Yudong, et al. Effect of ultrasonic treatment on surface characteristics of aramid[J]. Acta Materiae Compositae Sinica,2003,20(2):35-40(in Chinese).
    [21] 姜开宇, 李豪, 左军超, 等. 超声振动对玻纤增强聚丙烯复合材料注射成型特性的影响[J]. 复合材料学报, 2015, 32(5):1330-1340.

    JIANG Kaiyu, LI Hao, ZUO Junchao, et al. Effects of ultrasonic vibration on injection molding characteristics of glass fiber reinforced polypropylene composites[J]. Acta Materiae Compositae Sinica,2015,32(5):1330-1340(in Chinese).
    [22] SALVATORI D, CAGLAR B, TEIXIDÓ H, et al. Permeability and capillary effects in a channel-wise non-crimp fabric[J]. Composites Part A: Applied Science and Manufacturing,2018,108:41-52. doi: 10.1016/j.compositesa.2018.02.015
    [23] ZHANG D, JIANG E, ZHOU J, et al. Investigation on enhanced mechanism of heat transfer assisted by ultrasonic vibration[J]. International Communications in Heat and Mass Transfer,2020,115:104523.
    [24] 吉智. 超声辅助注射成型充模流动特性的可视化研究[D]. 大连: 大连理工大学, 2014.

    JI Zhi. Visualization research on polymer filling flow characteristics of ultrasonic assisted injection molding[D]. Dalian: Dalian University of Technology, 2014(in Chinese).
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  1254
  • HTML全文浏览量:  682
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-25
  • 录用日期:  2021-02-10
  • 网络出版日期:  2021-03-03
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回