留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多指标控制的聚氨酯阻尼材料动态力学性能稳健分析

苏毅 李婷 李爱群

苏毅, 李婷, 李爱群. 基于多指标控制的聚氨酯阻尼材料动态力学性能稳健分析[J]. 复合材料学报, 2020, 37(0): 1-11
引用本文: 苏毅, 李婷, 李爱群. 基于多指标控制的聚氨酯阻尼材料动态力学性能稳健分析[J]. 复合材料学报, 2020, 37(0): 1-11
Yi SU, Ting LI, Aiqun LI. Robustness analysis of dynamic properties of polyurethane damping materials based on multi-index control[J]. Acta Materiae Compositae Sinica.
Citation: Yi SU, Ting LI, Aiqun LI. Robustness analysis of dynamic properties of polyurethane damping materials based on multi-index control[J]. Acta Materiae Compositae Sinica.

基于多指标控制的聚氨酯阻尼材料动态力学性能稳健分析

基金项目: 国家自然科学基金(51438002;51278104)
详细信息
    通讯作者:

    苏毅,博士,副教授,研究方向为建筑结构抗震与减震、现代竹木结构  E-mail:suyi@njfu.edu.cn

Robustness analysis of dynamic properties of polyurethane damping materials based on multi-index control

  • 摘要: 强震或强风下,建筑结构中的隔震或消能装置受力大,变形大,这就要求阻尼材料的阻尼系数高,适用温度与室外环境匹配,具有大阻尼温域。目前,聚氨酯阻尼材料难以同时满足上述诸多指标性能,因而无法广泛应用于建筑结构减震领域。本文选择了玻璃纤维、石墨烯、四脚状氧化锌晶须以及受阻酚小分子四种增强填料,以同时提高聚氨酯材料的阻尼性能、力学性能并改变其温度特性。通过正交试验设计了不同用量的聚氨酯复合阻尼材料,并进行基本物理力学性能和动态力学性能试验。根据动态热机械分析(DMA)试验结果,利用田口法进行损耗因子峰值tanδmax、大阻尼温域ΔT0.5和玻璃化转变温度Tg三个动态力学性能指标的信噪比分析和方差分析,以获得各指标的稳健性。依据各指标的重要性进行权重赋值,由层次分析法(AHP)构建多指标赋权评价方法,得到优化方案。并通过验证试验可知,优化后聚氨酯材料tanδmax为1.24,ΔT0.5为57℃,Tg为21.8℃,与初始组相比,其tanδmax提高了16.98%,ΔT0.5拓宽了46.91%。
  • 图  1  聚氨酯阻尼材料损耗因子随温度的变化曲线

    Figure  1.  Curve of loss factor with temperature of polyurethane damping materials

    图  2  聚氨酯阻尼材料的试验指标结果

    Figure  2.  Results of test indicators of polyurethane damping materials

    No. 0 is the sample of matrix material

    图  3  聚氨酯阻尼材料的典型SEM图像

    Figure  3.  Typical SEM images of polyurethane damping materials

    图  4  石墨烯改性聚氨酯阻尼材料的SEM图像

    Figure  4.  SEM images of polyurethane damping materials modified by graphene

    图  5  tanδmax信噪比均数分析

    Figure  5.  Analysis of tanδmax signal-to-noise ratio means

    图  6  ΔT0.5信噪比均数分析

    Figure  6.  Analysis of ΔT0.5 signal-to-noise ratio means

    图  7  Tg信噪比均数分析

    Figure  7.  Analysis of Tg signal-to-noise ratio means

    图  8  初始组和优化组的DMA曲线

    Figure  8.  DMA curves of initial and optimization groups

    表  1  因素水平

    Table  1.   Factor level

    Experimental
    factor
    FactorContent
    Level 1Level 2Level 3
    Glass fiber A 10 12 15
    T-ZnOw B 0.3 0.5 0.7
    Graphene C 0.1 0.2 0.3
    AO-80 D 10 14 18
    Notes: The dosage in the table is 100 phr of polyurethane-epoxy; T-ZnOw—Tetra-needle like ZnO whiskers.
    下载: 导出CSV

    表  2  高阻尼聚氨酯材料$ {\rm{L}}_{9}\left({3}^{4}\right) $正交表

    Table  2.   $ {\rm{L}}_{9}\left({3}^{4}\right) $ orthogonal table of high damping polyurethane materials

    NumberSpecimenABCD
    1 A1B1C1D1 10 0.3 0.1 10
    2 A1B2C2D2 10 0.5 0.2 14
    3 A1B3C3D3 10 0.7 0.3 18
    4 A2B1C2D3 12 0.3 0.2 18
    5 A2B2C3D1 12 0.5 0.3 10
    6 A2B3C1D2 12 0.7 0.1 14
    7 A3B1C3D2 15 0.3 0.3 14
    8 A3B2C1D3 15 0.5 0.1 18
    9 A3B3C2D1 15 0.7 0.2 10
    Notes: A, B, C and D in specimen represent factors; 1, 2 and 3 in specimen represent factor lever in Table 1.
    下载: 导出CSV

    表  3  聚氨酯阻尼材料样品的基本物理力学性能指标

    Table  3.   Basic physical mechanical properties of polyurethane damping material specimens

    Sample numberHardness[18] /HATensile strength[19] /MPaElongation at break[19]/%Compression set[21]/%Tear strength[20] /MPa
    1 71 13 700 13 40
    2 74 20 650 6 51
    3 74 16 700 17 39
    4 74 20 730 16 40
    5 67 15 655 14 40
    6 66 13 650 13 29
    7 68 14 670 27 32
    8 67 15 690 35 39
    9 71 18 655 14 37
    下载: 导出CSV

    表  4  DMA试验结果及其信噪比(S/N)

    Table  4.   Results and signal-to-noise ratio(S/N) of DMA test

    NumberSpecimentanδmaxΔT0.5Tg
    ValueS/N/dBValue /℃S/N/dBValue /℃S/N/dB
    1 A1B1C1D1 0.87 −1.21 30 29.54 11.8 18.3
    2 A1B2C2D2 0.9 −0.92 38.2 31.64 18 6.0
    3 A1B3C3D3 1.04 0.34 42 32.46 18.9 0.8
    4 A2B1C2D3 1.25 1.94 52.8 34.45 22 6.0
    5 A2B2C3D1 1.06 0.51 40 32.04 21.2 1.6
    6 A2B3C1D2 1.06 0.51 38.8 31.78 18.9 0.8
    7 A3B1C3D2 1.1 0.83 41.4 32.34 21.1 0.8
    8 A3B2C1D3 1.14 1.14 39.7 31.98 22 6.0
    9 A3B3C2D1 1 0 36.2 31.17 16 12.0
    Average - 0.35 - 32.03 - 5.8
    下载: 导出CSV

    表  5  tanδmax信噪比

    Table  5.   Noise-signal ratio for tanδmax

    NameLevel 1/dBLevel2 /dBLevel 3/dBDIF
    A:GF −0.59 0.98 0.66 1.57
    B:T-ZnOw 0.52 0.24 0.28 0.28
    C:Graphene 0.14 0.34 0.56 0.42
    D:AO-80 −0.23 0.14 1.14 1.37
    Average(S/N)=0.35
    Notes: DIF—Difference between the maximum and minimum signal-to-noise ratio; GF—Glass fiber.
    下载: 导出CSV

    表  6  tanδmax信噪比方差分析

    Table  6.   Variance analysis of signal-to-noise ratio of tanδmax

    NameFreedomSum of squareVarianceF
    A: GF 2 1.39 0.70 21.22
    B:T-ZnOw 2 0.05 0.02 0.69
    C:Graphene 2 0.09 0.04 1.31
    D:AO-80 2 1 0.50 15.27
    Error 0 0 - -
    Sum 8 2.52 - -
    (Error) (4) (0.13) (0.03) -
    Notes: The meanings of the values in the table are given in Ref. [12]; F is the ratio of the two mean square (effect term / error term).
    下载: 导出CSV

    表  7  ΔT0.5因素信噪比

    Table  7.   Noise-signal ratio for ΔT0.5

    NameLevel 1/dBLevel2 /dBLevel 3/dBDIF
    A:GF 31.22 32.76 31.83 1.54
    B:T-ZnOw 32.11 31.89 31.81 0.3
    C:Graphene 31.10 32.42 32.28 1.32
    D:AO-80 30.92 31.92 32.96 2.04
    Average(S/N)=32.03 -
    下载: 导出CSV

    表  8  ΔT0.5信噪比方差分析

    Table  8.   Analysis of ΔT0.5 variance of signal-to-noise ratio

    NameFreedomSum of squareVarianceF
    A: GF 2 1.203 0.60 24.90
    B:T-ZnOw 2 0.048 0.02 1.00
    C:Graphene 2 1.052 0.53 21.77
    D:AO-80 2 2.081 1.04 43.09
    Error 0 0 - -
    Sum 8 4.38 - -
    (Error) (2) (0.048) (0.02) -
    下载: 导出CSV

    表  9  Tg因素信噪比

    Table  9.   Noise-signal ratio for Tg

    NameLevel 1/dBLevel2 /dBLevel 3/dBDIF
    A:GF 8.37 2.81 6.3 5.56
    B:T-ZnOw 8.37 4.54 4.57 3.87
    C:Graphene 8.37 8.03 1.08 7.3
    D:AO-80 10.63 2.56 4.29 6.34
    Average(S/N)=5.83 -
    下载: 导出CSV

    表  10  Tg信噪比方差分析

    Table  10.   Analysis of Tg variance of signal-to-noise ratio

    NameFreedomSum of squareVarianceF
    A: GF 2 15.79 7.90 1.63
    B:T-ZnOw 2 9.7 4.85 1.00
    C:Graphene 2 33.85 16.93 3.49
    D:AO-80 2 36.1 18.1 3.72
    Error 0 0 - -
    Sum 8 95.44 - -
    (Error) (2) (9.7) (4.85) -
    下载: 导出CSV

    表  11  AHP赋权法综合评估结果

    Table  11.   Comprehensive evaluation results of AHP weighting method

    FactortanδmaxΔT0.5TgWeight coefficient
    Criteria weight0.1430.2860.571
    Scheme A2B1C3D3 0.571 0.286 0.143 0.347
    A2B1C2D3 0.286 0.571 0.286 0.449
    A1B1C1D1 0.143 0.143 0.571 0.204
    Notes: The meanings of the values in the table are given in Ref. [12]; AHP—Analytic Hierarchy Process.
    下载: 导出CSV

    表  12  高阻尼聚氨酯材料阻尼性能试验验证

    Table  12.   Experimental verification of damping performance of polyurethane damping materials

    Quality characteristic targetInitial groupOptimization groupImprovement/dBImprovement rate/%
    PredictedMeasured
    tanδmax 1.06 1.24 0.18 16.98
    S/N of tanδmax 0.51 2.01 1.87 1.36 266.67
    ΔT0.5/℃ 38.8 53 14.2 36.60
    S/N of ΔT0.5 31.78 34.96 34.48 2.7 8.50
    Tg/℃ 18.9 21.8 −0.7 −3.70
    S/N of Tg 0.83 6.02 5.11
    下载: 导出CSV
  • [1] 张志, 许勇. 岳耀, 等. AO-60/丁腈橡胶-环氧化天然橡胶-天然橡胶复合材料的制备及其阻尼性能[J]. 复合材料学报, 2019, 36(8):1796-1803.

    ZHANG Zhi, XU Yong, YUE Yao, et al. Preparation and damping properties of hindered phenol AO-80/ nitrile butadiene rubber- epoxidized natural rubber –natural rubber composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1796-1803(in Chinese).
    [2] 许俊红, 李爱群, 苏毅, 等. 开环式聚降冰片烯共混黏弹性阻尼材料的动态阻尼力学热分析[J]. 高分子材料科学与工程, 2015, 31(7):51-56.

    XU Junhong, LI Aiqun, SU Yi, et al. Dynamic damping mechanical analysis of viscolastic damping material mixed norsorex by ring-opening metathesis polymerization[J]. Polymer Materials Science Engineering,2015,31(7):51-56(in Chinese).
    [3] WANG Yueqiong, LIAO Lusheng, LIN Hongtu, et al. Damping Properties of Natural rubber/ Epoxidized Natural Rubber composites with different fillers[J]. Advances in Engineering Research,2018,120:772-775.
    [4] SHI X, LI Q, FU G, et al. The effects of a polyol on the damping properties of EVM/PLA blends[J]. Polymer Testing,2015,33:1-6.
    [5] 李翰模, 杨一林, 李志鹏, 等. 基于网络结构设计制备宽温域高阻尼聚氨酯弹性体[J]. 高分子材料科学与工程, 2017, 33(6):146-151.

    LI Hanmo, YANG Yilin, LI Zhipeng, et al. Preparation of high damping polyurethane with wide temperature range based on network structure designing[J]. Polymer Materials Science & Engineering,2017,33(6):146-151(in Chinese).
    [6] MOUSA A. Thermal properties of carboxylated nitrile rubber/nylon-12 composites-filled lignocellulose[J]. Journal of Thermoplastic Composite Materials,2014,27(2):167-179. doi:  10.1177/0892705712475017
    [7] KANG Seok Lee, JEONG-Il Choi, SANG-Koo Kim, et al. Damping and mechanical properties of composite composed of polyurethane matrix and preplaced aggregates[J]. Construction and Building Materials,2017,3(233):68-75.
    [8] KHIMI S R, PICKRING K L. The effect of silane coupling agent on the dynamic mechanical properties of iron sand/natural rubber magnetorheological elastomers[J]. Composites Part B: Engineering,2016,90:115-125. doi:  10.1016/j.compositesb.2015.11.042
    [9] DONG-Ju Lee, MIN-Kyeom Kim, JOSEPH Walsh, et al. Experimental characterization of temperature dependent dynamic properties of glass fiber reinforced polyurethane foams[J]. Polymer Texting,2019,74:30-38. doi:  10.1016/j.polymertesting.2018.12.013
    [10] ATIQAH A, JAWAID M, SAPUAN S M, et al. Thermal properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites[J]. Composite Structures,2018,202:954-958. doi:  10.1016/j.compstruct.2018.05.009
    [11] LIU Gang, TANG Shawei, REN Wenchao, et al. Effect of thermal cycling on the damping behavior in alumina borate whisker with and without Bi<sub>2</sub>O<sub>3</sub> coating reinforced pure aluminum composites[J]. Materials and Design,2014,3(34):244-249.
    [12] ADEYINKA Idowu, PRANJAL Nautiyal, LUIZA Fontoura, et al. Multi-scale damping of graphene foam-based polyurethane composites synthesized by electrostatic spraying[J]. Polymer Composites,2019,40:1862-1870. doi:  10.1002/pc.24948
    [13] HUNG Puiyan, KINTAK Lau, KUN Qiao, et al. Property enhancement of CFRP composites with different graphene oxide employment methods at a cryogenic temperature[J]. Composites Part A,2019,120:56-63. doi:  10.1016/j.compositesa.2019.02.012
    [14] YANG Dawei, ZHAO Xiuying, CHAN Tung, et al. Investigation of the damping properties of hindered phenol AO-80/polyacrylate hybrids using molecular dynamics simulations in combination with experimental methods[J]. Journal of Materials Science,2016,51(12):5760-5774. doi:  10.1007/s10853-016-9878-7
    [15] ZHU H, HU Y M, ZHU W D, et al. Multi-objective design optimization of an engine accessory drive system with a robustness analysis[J]. Applied Mathematical Modelling,2020,77:1564-1581. doi:  10.1016/j.apm.2019.09.016
    [16] KIT Yan Chan, CEDRIC Ka Fai Yiu, SVEN Nordholm. Microphone configuration for beamformer design using the Taguchi method[J]. Measurement,2017,10(25):58-66.
    [17] 王卫红, 王园. 基于PCA-AHP-IE的多指标评价模型研究与应用[J]. 浙江工业大学学报, 2019, 47(6):591-596.

    WANG Weidong, WANG Yuan. Research and application of multi-criteria evaluation model based on PCA-AHP-IE[J]. Journal of Zhejiang University of Technology,2019,47(6):591-596(in Chinese).
    [18] 中华人民共和国国家质量监督检验检疫总局. GB/T531.1-2008硫化橡胶或热塑性橡胶压入硬度试验方法第1部分: 邵氏硬度计法[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T531.1-2008 Rubber, vulcanized or thermoplastic- Determination of indentation hardness- Part 1: Duromerer method(Shore hardness)[S]. Beijing: Standards Press of China, 2008 (in Chinese).
    [19] 中华人民共和国国家质量监督检验检疫总局. GB/T528-2009硫化橡胶或热塑性橡胶拉伸应力应变性能的测定[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T528-2009 Rubber, vulcanized or thermoplastic- Determination of tensile stress-strain properties[S]. Beijing: Standards Press of China, 2009 (in Chinese).
    [20] 中华人民共和国国家质量监督检验检疫总局. GB/T529.1-2008硫化橡胶或热塑性橡胶撕裂强度的测定: 裤形、直角形和新月形试样[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T529.1-2008 Rubber, vulcanized or thermoplastic- Determination of tear strength (Trouser, angle and crescent test pieces)[S]. Beijing: Standards Press of China, 2008 (in Chinese).
    [21] 中华人民共和国国家质量监督检验检疫总局. GB/T 7759.1-2015 硫化橡胶或热塑性橡胶 压缩永久变形的测定 第1部分: 在常温及高温条件下[S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 7759.1-2015 Rubber, vulcanized or thermoplastic- Determination of compression set- Part 1: At ambient or elevated temperatures[S]. Beijing: Standards Press of China, 2015 (in Chinese).
    [22] 中华人民共和国国家质量监督检验检疫总局. GB/T 9870.1-2006《硫化橡胶或热塑性橡胶动态性能的测定 第1部分: 通则》[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 9870.1-2006 Rubber, vulcanized or thermoplastic- Determination of dynamic properties- Part 1: General guidance[S]. Beijing: Standards Press of China, 2006 (in Chinese).
    [23] 中华人民共和国国家质量监督检验检疫总局. GB 20688.3-2006《橡胶支座第3部分: 建筑隔震橡胶支座》[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB 20688.3-2006 Rubber bearing- Part 3: Elastomeric seismic- protection isolators for buildings[S]. Beijing: Standards Press of China, 2006 (in Chinese).
  • [1] 周浩然, 荆佳奇, 王德志, 范旭鹏, 袁镇, 赵立伟.  双马来酰亚胺工艺改性及性能, 复合材料学报. 2020, 37(6): 1278-1284. doi: 10.13801/j.cnki.fhclxb.20191021.003
    [2] 邓宗才, 姚军锁.  高强箍筋约束超高性能混凝土柱轴压性能, 复合材料学报. 2020, 37(10): 1-12. doi: 10.13801/j.cnki.fhclxb.20200203.002
    [3] 孙范忱, 郭静, 杨强, 于跃, 赵亚博.  EDC-NHS交联壳聚糖-聚氧化乙烯-丝素蛋白静电纺丝纳米纤维的制备及生物相容性, 复合材料学报. 2020, 37(11): 1-8. doi: 10.13801/j.cnki.fhclxb.20200421.002
    [4] 张哲轩, 周再峰, 山泉, 李祖来, 张飞.  蜂窝预制体孔径对WC/Fe复合材料中W扩散均匀性的影响, 复合材料学报. 2020, 37(10): 1-8. doi: 10.13801/j.cnki.fhclxb.20200226.001
    [5] 赵冰冰, 方艳, 武康, 汪家权.  蓝藻粉-青霉素菌渣/低密度聚乙烯复合材料配方的响应面法优化设计和验证, 复合材料学报. 2020, 37(8): 1894-1903. doi: 10.13801/j.cnki.fhclxb.20191206.001
    [6] 辛国祥, 王蒙蒙, 翟耀, 王艳辉, 张邦文, 宋金玲, 刘晓旭.  一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料, 复合材料学报. 2020, 37(): 1-11.
    [7] 杜婷婷, 叶云霞, 刘远方, 李浩楠, 任旭东, 符永宏.  纳秒激光调控CFRP表面润湿性及其对胶接性能的影响, 复合材料学报. 2020, 37(): 1-11.
    [8] 武壮壮, 马国佳, 崔向中, 刘星.  微纳结构超疏水表面的浸润性及防冰性能, 复合材料学报. 2020, 37(): 1-7.
    [9] 李庆辉, 孔维纳, 李喆, 王少敏, 王绍凯, 顾轶卓, 李敏.  基于高Q腔法测试氮化硅纤维的介电性能, 复合材料学报. 2020, 37(9): 2240-2249. doi: 10.13801/j.cnki.fhclxb.20200115.003
    [10] 周春苹, 刘付超, 周长聪, 李兴德.  石英纤维/环氧树脂复合材料结构静强度的可靠度计算及全局灵敏度分析, 复合材料学报. 2020, 37(7): 1611-1618. doi: 10.13801/j.cnki.fhclxb.20190930.002
    [11] 巩桂芬, 曹景飞, 邹明贵.  共纺聚乙烯-乙烯醇锂-热塑性聚氨酯锂离子电池隔膜热力学及电化学性能, 复合材料学报. 2020, 37(5): 1063-1069. doi: 10.13801/j.cnki.fhclxb.20190924.001
    [12] 张栋梁, 薛向晨, 梁宪珠, 湛利华, 杨晓波, 郑晓玲.  实验分析帽型加筋壁板填充芯材下方蒙皮褶皱成因, 复合材料学报. 2020, 37(12): 1-7.
    [13] 张钊滟, 马帅, 卢鑫, 郑玉婴, 林腾飞.  壳聚糖-氧化石墨烯/热塑性聚氨酯复合材料的原位溶液聚合及性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200302.002
    [14] 王彩萍, 张家华, 王晓杰.  各向异性不同含量羟基铁粉颗粒/磁性聚氨酯泡沫的可控力学和声学性能, 复合材料学报. 2020, 37(12): 1-9. doi: 10.13801/j.cnki.fhclxb.20200401.001
    [15] 欧华杰, 陈港, 朱朋辉, 魏渊, 李方.  纳米纤维素-碳纳米管/热塑性聚氨酯复合薄膜的制备及应变响应性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200306.003
    [16] 吴景, 曾威, 邝美霞, 钟成.  细菌纤维素-ZnO/水性聚氨酯复合薄膜的制备与性能, 复合材料学报. 2020, 37(12): 1-9.
    [17] 刘秀玉, 张冰, 韩祥祥, 刘亚辉, 赵石旭, 唐刚.  空心玻璃微珠/硬质聚氨酯泡沫复合材料的制备及性能, 复合材料学报. 2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002
    [18] 梅生启, 唐广, 杨斌, 王元丰.  基于分数阶黏弹性模型的木塑复合材料蠕变/回复性能分析, 复合材料学报. 2020, 37(8): 2055-2064. doi: 10.13801/j.cnki.fhclxb.20191230.002
    [19] 丁一宁, 马跃, 郝晓卫.  基于分形理论分析裂缝形态对纤维/混凝土渗透性的影响, 复合材料学报. 2020, 37(): 1-9.
    [20] 路鹏程, 陈栋, 王志平.  碳纤维/聚苯硫醚热塑性复合材料电阻焊接工艺, 复合材料学报. 2020, 37(5): 1041-1048. doi: 10.13801/j.cnki.fhclxb.20190807.002
  • 加载中
计量
  • 文章访问数:  57
  • HTML全文浏览量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 录用日期:  2020-08-13

目录

    /

    返回文章
    返回