留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电纺十二酸十二酯@聚乙烯醇蓄热调温纤维的制备及性能

石峰 张国庆 刘国金 周岚

石峰, 张国庆, 刘国金, 等. 电纺十二酸十二酯@聚乙烯醇蓄热调温纤维的制备及性能[J]. 复合材料学报, 2021, 38(8): 2517-2526. doi: 10.13801/j.cnki.fhclxb.20201022.002
引用本文: 石峰, 张国庆, 刘国金, 等. 电纺十二酸十二酯@聚乙烯醇蓄热调温纤维的制备及性能[J]. 复合材料学报, 2021, 38(8): 2517-2526. doi: 10.13801/j.cnki.fhclxb.20201022.002
SHI Feng, ZHANG Guoqing, LIU Guojin, et al. Preparation and properties of the electrospun dodecanol dodecanoate@polyvinyl alcohol thermo-regulated fibers[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2517-2526. doi: 10.13801/j.cnki.fhclxb.20201022.002
Citation: SHI Feng, ZHANG Guoqing, LIU Guojin, et al. Preparation and properties of the electrospun dodecanol dodecanoate@polyvinyl alcohol thermo-regulated fibers[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2517-2526. doi: 10.13801/j.cnki.fhclxb.20201022.002

电纺十二酸十二酯@聚乙烯醇蓄热调温纤维的制备及性能

doi: 10.13801/j.cnki.fhclxb.20201022.002
基金项目: 国家自然科学基金 (22075252);浙江省国际产业联合研发计划项目(2019C54003)
详细信息
    通讯作者:

    周岚,博士,副教授,硕士生导师,研究方向为功能性纺织品  E-mail:lan_zhou330@163.com

  • 中图分类号: TB34;TQ340.64

Preparation and properties of the electrospun dodecanol dodecanoate@polyvinyl alcohol thermo-regulated fibers

  • 摘要: 以十二酸十二酯作为相变材料(PCM),以聚乙烯醇(PVA)作为支撑材料,通过乳液静电纺丝技术制备十二酸十二酯@PVA蓄热调温纤维。应用SEM、TEM、DSC、TGA、迷你温度记录仪和红外热成像仪等研究了纺丝液组成及静电纺纤维的表面形貌、潜热值、热稳定性、调温性能、力学性能和水溶性。结果表明,当PVA浓度为10.0wt%、十二酸十二酯∶PVA质量比为50%时,纺丝液具有较好的稳定性和可纺性。十二酸十二酯@PVA静电纺纤维具有明显的芯-鞘结构,纤维中PCM的热分解温度比纯PCM提高了20℃,具有良好的热稳定性。十二酸十二酯@PVA静电纺纤维的潜热值在63 J/g左右,在降温冷却和热红外成像测试中,显示出良好的蓄热调温性能。经戊二醛交联后,静电纺纤维中支撑材料的热稳定性显著增强,而且,纤维的力学性能和水溶解性得到明显改善。

     

  • 图  1  不同PVA浓度下PCM@PVA纺丝液静置24 h后的照片

    Figure  1.  Photos of the PCM@PVA solutions with different PVA concentrations after 24 h ((a) 6.0wt%; (b) 8.0wt%; (c) 10.0wt%; (d) 14.0wt%)

    图  2  不同PVA浓度所得PCM@PVA纤维的SEM图像

    Figure  2.  SEM images of PCM@PVA fibers prepared at different PVA concentrations ((a) 6.0wt%; (b) 8.0wt%; (c) 10.0wt%; (d) 14.0wt%)

    图  3  10.0wt%和14.0wt%PVA浓度制备的静电纺纤维的SEM图像

    Figure  3.  SEM images of electrospun fibers with 10.0wt% and 14.0wt% PVA concentrations ((a) PVA fiber (10.0wt%); (b) PCM30@PVA fiber (10.0wt%); (c) PCM50@PVA fiber (10.0wt%); (d) PCM80@PVA fiber (10.0wt%); (e) PVA fiber (14.0wt%); (f) PCM30@PVA fiber (14.0wt%); (g) PCM50@PVA fiber (14.0wt%); (h) PCM80@PVA fiber (14.0wt%))

    图  4  10.0wt%和14.0wt%PVA浓度制备的静电纺纤维的平均直径

    Figure  4.  Average diameter profile of electrospun fibers with 10.0wt% and 14.0wt% PVA concentrations

    图  5  10.0wt% (a) 和14.0wt% (b) PVA浓度制备的静电纺纤维及PCM的DSC曲线

    Figure  5.  DSC curves of PCM and electrospun fibers with 10.0wt% (a) and 14.0wt% (b) PVA concentrations

    图  6  10.0wt%和14.0wt%PVA制备的PCM@PVA纤维热处理后在吸油纸上的照片

    Figure  6.  Photos of PCM@PVA fibers prepared by 10.0wt% and 14.0wt% PVA on oil-absorbing sheet after heat treatment ((a) PCM30@PVA fiber (10.0wt%); (b) PCM50@PVA fiber (10.0wt%); (c) PCM80@PVA fiber (10.0wt%); (d) PCM30@PVA fiber (14.0wt%); (e) PCM50@PVA fiber (14.0wt%); (f) PCM80@PVA fiber (14.0wt%))

    图  7  不同样品的TEM图像

    Figure  7.  TEM images of different samples((a) PVA fiber; ((b), (c)) PCM@PVA fiber; (d) CPVA-PCM fiber)

    图  8  不同样品的TGA曲线

    Figure  8.  TGA curves of different samples

    图  9  PVA纤维和PCM@PVA纤维的降温曲线

    Figure  9.  Cooling curves of PVA fibers and PCM@PVA fibers

    图  10  PVA纤维和PCM@PVA纤维的热红外成像图

    Figure  10.  Thermal infrared images of PVA fibers and PCM@PVA fibers((a) PVA fiber; (b) PCM30@PVA fiber; (c) PCM50@PVA fiber; (d) PCM80@PVA fiber)

    图  11  不同样品的拉伸曲线

    Figure  11.  Tensile curves of different samples

    图  12  PCM@PVA纤维 (a) 和CPVA-PCM纤维 (b) 在不同时间的水溶解情况

    Figure  12.  Water solubility of PCM@PVA fiber (a) and CPVA-PCM fiber (b) at different time

    表  1  材料名称与缩写对应

    Table  1.   Corresponding of material name and abbreviation

    SampleAbbreviation
    Fibers with different dodecanol dodecanoate∶PVA mass ratios 30% PCM30@PVA fiber
    50% PCM50@PVA fiber
    80% PCM80@PVA fiber
    Dodecanol dodecanoate@polyvinyl alcohol thermal storage solution PCM@PVA solution
    Dodecanol dodecanoate-polyvinyl alcohol thermal storage fiber PCM@PVA fiber
    Crosslinked polyvinyl alcohol/dodecanol dodecanoate thermal storage fiber CPVA-PCM fiber
    Notes: PCM—Phase change material; PVA—Polyvinyl alcohol; CPVA—Crosslinking PVA.
    下载: 导出CSV

    表  2  不同PCM@PVA纤维样品的热性能数据

    Table  2.   Thermal performance data of different PCM@PVA fiber samples

    SampleTmo/℃Tm/℃ΔHm/(J·g−1)Tco/℃Tc1/℃Tc2/℃ΔHc/(J·g−1)
    PCM 25.10 28.10 193.70 24.34 23.64 193.25
    PVA fiber(10.0wt%)
    PCM30@PVA fiber(10.0wt%) 25.96 28.72 26.91 24.81 23.99 8.51 26.99
    PCM50@PVA fiber(10.0wt%) 26.30 29.71 63.18 25.11 24.88 14.63 62.52
    PCM80@PVA fiber(10.0wt%) 26.69 29.07 72.48 25.07 25.01 14.29 72.32
    PVA fiber(14.0wt%)
    PCM30@PVA fiber(14.0wt%) 25.38 28.07 28.53 25.42 22.41 7.29 27.42
    PCM50@PVA fiber(14.0wt%) 25.59 28.60 63.50 24.04 23.47 8.67 61.23
    PCM80@PVA fiber(14.0wt%) 25.30 28.72 73.37 24.16 23.72 7.43 73.44
    Notes: Tmo—Onset melting temperature; Tm—Melting temperature; ΔHm—Melting enthalpy; Tco—Onest crystallizing temperature; Tc1—First crystallizing temperature; Tc2—Second crystallizing temperature; ΔHc—Crystallization enthalpy.
    下载: 导出CSV

    表  3  不同样品的热分解数据

    Table  3.   Thermal decomposition data of different samples

    SampleT1/℃W1/wt%T2/℃W2/wt%T3/℃W3/wt%T4/℃W4/wt%W/wt%
    PCM 190 100 100
    PVA fiber 20 7.5 270 64.5 445 22 94
    PCM30@PVA fiber 20 7.5 210 13.5 270 57 434 15 93
    PCM50@PVA fiber 20 7.5 210 21 270 44.5 420 21 94
    PCM80@PVA fiber 20 7.5 210 29 270 42 434 14.5 93
    CPVA-PCM fiber 20 7.5 210 42.5 355 25 450 19 94
    Notes: T1, T2, T3, T4—Initial degradation temperatures of the 1st, 2nd, 3rd and 4th stages; W1, W2, W3, W4—Mass loss fractions of the 1st, 2nd, 3rd and 4th stages; W—Final mass loss fraction.
    下载: 导出CSV
  • [1] 张渤, 牟思阳, 李圣林, 等. 二元脂肪酸/生物基SiO2复合相变材料的制备与性能[J]. 复合材料学报, 2016, 33(11):2674-2681.

    ZHANG B, MOU S Y, LI S L, et al. Preparation and properties of binary fatty acids/bio-based SiO2 phase change composites[J]. Acta Materiae Compositae Sinica,2016,33(11):2674-2681(in Chinese).
    [2] 李树芹, 陈赛, 王学晨, 等. 梳状相变聚合物为芯材的复合调温纤维的制备及热性能[J]. 复合材料学报, 2018, 35(1):8-15.

    LI S Q, CHEN S, WANG X C, et al. Fabrication and thermal properties of wet-spun thermo-regulating fibers with a novel comb-like phase change polymer core[J]. Acta Materiae Compositae Sinica,2018,35(1):8-15(in Chinese).
    [3] ZHOU D, ZHAO C Y, TIAN Y. Review on thermal energy storage with phase change materials (PCMs) in building applications[J]. Applied Energy,2012,92(4):593-605.
    [4] CHOI K, CHO G. Physical and mechanical properties of thermostatic fabrics treated with nanoencapsulated phase change materials[J]. Journal of Applied Polymer Science,2011,121(6):3238-3245. doi: 10.1002/app.33870
    [5] BENMOUSSA D, MOLNAR K, HANNACHE H, et al. Novel thermo-regulating comfort textile based on poly(allyl ethylene diamine)/n-hexadecane microcapsules grafted onto cotton fabric[J]. Advances in Polymer Technology,2016,37(24):419-428.
    [6] WUTTIG M, YAMADA N. Phase-change materials for rewriteable data storage[J]. Nature materials,2007,6(11):824-832. doi: 10.1038/nmat2009
    [7] BHARDWAJ N, KUNDU S C. Electrospinning: A fascinating fiberfabrication technique[J]. Biotechnology Advances,2010,28(3):325-347. doi: 10.1016/j.biotechadv.2010.01.004
    [8] NASOURI K, SHOUSHTARI A M, MOJTAHEDI M R M. Effects of polymer/solvent systems on electrospun polyvinylpyrrolidone nanofiber morphology and diameter[J]. Polymer Science Series A,2015,57(6):747-755. doi: 10.1134/S0965545X15060164
    [9] YUAN Y, ZHANG N, TAO W, et al. Fatty acids as phase change materials: A review[J]. Renewable and Sustainable Energy Reviews,2014,29:482-498. doi: 10.1016/j.rser.2013.08.107
    [10] LIU C Z, RAO Z H, ZHAO J T, et al. Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement[J]. Nano Energy,2015,13:814-826.
    [11] DO C V, NGUYEN T T T, PARK J S. Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics[J]. Solar Energy Materials and Solar Cells,2012,104:131-139. doi: 10.1016/j.solmat.2012.04.029
    [12] WU Y, CHEN C Z, JIA Y F, et al. Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage[J]. Applied Energy,2018,210:167-181. doi: 10.1016/j.apenergy.2017.11.001
    [13] 蔡以兵, 孙桂岩, 刘盟盟, 等. 定形相变复合材料的研究进展—静电纺丝法[J]. 高分子通报, 2015(2):18-25.

    CAI Y B, SUN G Y, LIU M M, et al. The research progress of form-stable phase change composite marerials—electrospinning[J]. Polymer Bulletin,2015(2):18-25(in Chinese).
    [14] ZHANG C, FENG F Q, ZHANG H. Emulsion electrospinning: Fundamentals, food applications and prospects[J]. Trends in Food Science & Technology,2018,80:175-186.
    [15] ZHAO L, LUO J, LI Y, et al. Emulsion-electrospinning n-octadecane/silk composite fiber as environmental-friendly form-stable phase change materials[J]. Journal of Applied Polymer Science,2017,134(47):1-10.
    [16] ZDRAVEVA E, FANG J, MIJOVIC B, et al. Electrospun poly(vinyl alcohol)/phase change material fibers: Morphology, heat properties, and stability[J]. Industrial & Engineering Chemistry Research,2015,54(35):8706-8712.
    [17] ZHANG G Q, CAI C W, ZHU G C, et al. Preparation, properties and encapsulation of high thermostability phase-change material[J]. Journal of Fiber Bioengineering and Informatics,2019,12(1):43-54. doi: 10.3993/jfbim00307
    [18] CAI C W, OUYANG X, ZHOU L, et al. Cosolvent free interfacial polycondensation and properties of polyurea PCM microcapsules with dodecanol dodecanoate as core material[J]. Solar Energy,2020,199:721-730. doi: 10.1016/j.solener.2020.02.071
    [19] PAIPITAK K, PORNPRA T, MONGKONTALANG P, et al. Characterization of PVA-chitosan nanofibers prepared by electrospinning[J]. Procedia Engineering,2011,13(8):101-105.
    [20] ZHAO J H, SUN Z Y, SHAO Z B, et al. Effect of surface-active agent on morphology and properties of electrospun PVA nanofibres[J]. Fibers and Polymers,2016,17(6):896-901. doi: 10.1007/s12221-016-6163-y
    [21] 李珍, 王军. 静电纺丝可纺性影响因素的研究成果[J]. 合成纤维, 2008, 9:6-11. doi: 10.3969/j.issn.1001-7054.2008.09.002

    LI Z, WANG J. Studies on influential factors on nanofiber spinnability of electrospinning[J]. Synthetic Fiber in China,2008,9:6-11(in Chinese). doi: 10.3969/j.issn.1001-7054.2008.09.002
    [22] WANG J, YAO H B, HE D, et al. Facile fabrication of gold nanoparticles-poly(vinyl alcohol) electrospun water-stable nanofibrous mats: Efficient substrate materials for biosensors[J]. ACS Applied Materials & Interfaces,2012,4(4):1963-1971.
    [23] PERESIN M S, HABIBI Y, ZOPPE J O, et al. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: Manufacture and characterization[J]. Macromolecules,2010,11:674-681.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1178
  • HTML全文浏览量:  423
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 录用日期:  2020-10-16
  • 网络出版日期:  2020-10-22
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回