留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹纤维的表面包覆及其对浇注型聚氨酯弹性体力学性能的影响

宁春平 易玉华

宁春平, 易玉华. 竹纤维的表面包覆及其对浇注型聚氨酯弹性体力学性能的影响[J]. 复合材料学报, 2021, 38(8): 2715-2723. doi: 10.13801/j.cnki.fhclxb.20201113.001
引用本文: 宁春平, 易玉华. 竹纤维的表面包覆及其对浇注型聚氨酯弹性体力学性能的影响[J]. 复合材料学报, 2021, 38(8): 2715-2723. doi: 10.13801/j.cnki.fhclxb.20201113.001
NING Chunping, YI Yuhua. Surface coating of bamboo fibres and its effects on the mechanical properties of casting polyurethane elastomer[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2715-2723. doi: 10.13801/j.cnki.fhclxb.20201113.001
Citation: NING Chunping, YI Yuhua. Surface coating of bamboo fibres and its effects on the mechanical properties of casting polyurethane elastomer[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2715-2723. doi: 10.13801/j.cnki.fhclxb.20201113.001

竹纤维的表面包覆及其对浇注型聚氨酯弹性体力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20201113.001
基金项目: 广东省自然科学基金(2016A030313520)
详细信息
    通讯作者:

    易玉华,硕士,高级工程师,硕士生导师,研究方向为橡塑改性及其复合材料  E-mail:mmyhyi@scut.edu.cn

  • 中图分类号: TB332

Surface coating of bamboo fibres and its effects on the mechanical properties of casting polyurethane elastomer

  • 摘要: 通过一种异氰酸酯基团(—NCO)质量分数为14.5wt%的高活性聚氨酯(PU)包覆剂对竹纤维(BF)进行表面包覆获得包覆型竹纤维(PUBF),采用原位聚合法制备了包覆型竹纤维增强浇注型聚氨酯(PUBF/PU)弹性体复合材料。采用FTIR、SEM、XRD及接触角测试仪对PUBF及BF进行了表征。结果表明,BF表面成功包覆了具有活性氨基(—NH2)封端的PU薄层,改善了BF与浇注型聚氨酯PU间的界面相容性及界面结合。复合材料中的PUBF质量分数为3wt%时,80℃下预聚体黏度仅为2.2 Pa·s,与纯预聚体黏度接近;对应PUBF/PU复合材料的拉伸和撕裂强度分别为38.0 MPa和82.9 kN/m,比纯浇注型PU分别提高51.6%和25.6%。高活性PU包覆剂预先包覆BF适合制备PUBF/PU复合材料。

     

  • 图  1  竹纤维(BF)和聚氨酯(PU)包覆剂包覆竹纤维(PUBF)的FTIR图谱

    Figure  1.  FTIR spectra of bamboo fibres (BF) and polyurethane (PU) coating agent coated bamboo fibres (PUBF)

    图  2  BF (a) 和PUBF ((b)~(d)) 的表面形貌

    Figure  2.  Surface morphologies of BF (a) and PUBF ((b)-(d))

    图  3  高活性PU包覆剂包覆BF的机制示意图

    Figure  3.  Mechanism schematic of BF coated by high reactivity PU coating agent

    图  4  BF和PUBF的XRD图谱

    Figure  4.  XRD spectra of BF and PUBF

    图  5  BF和PUBF的水 (a)、乙二醇 (b) 及PU预聚体 (c) 接触角

    Figure  5.  Contact angles of BF and PUBF with water (a), ethylene glycol (b) and PU prepolymer (c)

    图  6  BF/PU和PUBF/PU复合材料界面形貌

    Figure  6.  Interface morphologies of BF/PU and PUBF/PU composites

    图  7  BF/PU和PUBF/PU复合材料应力-应变曲线

    Figure  7.  Stress-strain curves of BF/PU and PUBF/PU composites

    图  8  BF和PUBF质量分数对PU预聚体80℃下黏度的影响

    Figure  8.  Effects of BF and PUBF mass fraction on the viscosity at 80℃ of PU prepolymers

    表  1  BF和PUBF的接触角及表面能参数

    Table  1.   Contact angles and surface free energy parameters of BF and PUBF

    SampleContact angle θ ± SD#/(°)Surface free energy/(mJ·m−2)
    WaterEthylene glycol$\gamma _{\rm{s}}^{\rm{p}}$$\gamma _{\rm{s}}^{\rm{d}}$${\gamma _{\rm{s}}} = \gamma _{\rm{s}}^{\rm{p}} + \gamma _{\rm{s}}^{\rm{d}}$
    BF 18.1±1.2 24.9±1.1 85.4 1.1 86.5
    PUBF 69.5±2.1 52.4±1.4 22.0 11.6 33.6
    Notes: SD#—Standard deviation; $\gamma _{\rm{s}}^{\rm{p}}$, $\gamma _{\rm{s}}^{\rm{d}}$ and ${\gamma _{\rm{s}}}$ —Polar, non-polar part and total of surface free energy, respectively.
    下载: 导出CSV

    表  2  PUBF/PU和BF/PU复合材料力学性能随纤维质量分数的变化

    Table  2.   Variations in mechanical properties of PUBF/PU and BF/PU composites with the mass fractions of PUBF and BF

    SampleTensile strength/
    MPa
    Tear strength/
    (kN·m−1)
    Elongation at
    break/%
    Hardness
    (HA)
    Rebound
    rate/%
    PU 25.1(0.8) 66.0(1.3) 528(10) 85(1) 45(1)
    BF/PU-0.5 25.5(0.6) 76.7(1.9) 505(13) 86(1) 43(1)
    BF/PU-1 29.7(1.4) 79.1(2.9) 500(21) 87(1) 42(1)
    BF/PU-3 31.2(1.5) 81.2(2.9) 537(14) 90(2) 39(2)
    BF/PU-5 24.8(1.0) 82.6(2.6) 549(17) 91(1) 37(1)
    PUBF/PU-0.5 30.6(1.2) 77.1(2.1) 628(20) 86(1) 45(1)
    PUBF/PU-1 33.0(0.9) 80.6(1.6) 634(17) 86(1) 44(2)
    PUBF/PU-1.5 35.1(0.6) 82.2(2.1) 605(23) 87(1) 42(1)
    PUBF/PU-3 38.0(1.5) 82.9(1.4) 583(17) 88(2) 40(2)
    PUBF/PU-5 26.1(1.1) 88.2(2.0) 549(17) 86(1) 39(1)
    Notes: BF/PU-x and PUBF/PU-x stand for the composites with the fiber mass fractions of x%; Data in parentheses refer to the standard deviations.
    下载: 导出CSV
  • [1] KHALIL H P, BHAT I U, JAWAID M, et al. Bamboo fibre reinforced biocomposites: A review[J]. Materials & Design,2012,42:353-368.
    [2] MUHAMMAD A, RAHMAN M R, HAMDAN S, et al. Recent developments in bamboo fibre-based composites: A review[J]. Polymer Bulletin,2019,76:2655-2682. doi: 10.1007/s00289-018-2493-9
    [3] FARUK O, BLEDZKI A K, FINK H P, et al. Progress report on natural fibre reinforced composites[J]. Macromolecular Materials and Engineering,2014,299:9-26. doi: 10.1002/mame.201300008
    [4] 唐启恒, 程海涛, 王戈, 等. 竹纤维组合形态对竹纤维/聚丙烯复合材料性能的影响[J]. 复合材料学报, 2019, 36(11):2561-2567.

    TANG Q H, CHENG H T, WANG G, et al. Effect of combination forms of bamboo fibre on properties of bamboo fibre/polypropylene composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2561-2567(in Chinese).
    [5] 卢无恙, 易玉华. 芳纶1313沉析纤维增韧聚氨酯弹性体的研究[J]. 聚氨酯工业, 2018, 33(5):9-12.

    LU W Y, YI Y H. Study on polyurethane elastomer toughened with aramid 1313 fibrid[J]. Polyurethane Industry,2018,33(5):9-12(in Chinese).
    [6] 卢无恙, 易玉华. 改性芳纶沉析纤维对PU弹性体复合材料性能的影响[J]. 聚氨酯工业, 2019, 34(6):9-12.

    LU W Y, YI Y H. Effect of modified aramid fibrid on properties of PU elastomer composites[J]. Polyurethane Industry,2019,34(6):9-12(in Chinese).
    [7] LU W Y, YI Y H, GE M L, et al. Chlorination treatment of meta-aramid fibrids and its effects on mechanical properties of polytetramethylene ether glycol/toluene diisocyanate (PTMEG/TDI)-based polyurethane composites[J]. Polymers,2019,11:1794. doi: 10.3390/polym11111794
    [8] SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer[J]. Textile Research Journal,1959,29:786-794. doi: 10.1177/004051755902901003
    [9] RAMIRES E C, OLIVEIRA F, FROLLINI E. Composites based on renewable materials: Polyurethane-type matrices from forest byproduct/vegetable oil and reinforced with lignocellulosic fibres[J]. Journal of Applied Polymer Science,2013,129:2224-2233. doi: 10.1002/app.38934
    [10] JIA C, CHEN P, LIU W, et al. Surface treatment of aramid fibre by air dielectric barrier discharge plasma at atmospheric pressure[J]. Applied Surface Science,2011,257:4165-4170. doi: 10.1016/j.apsusc.2010.11.190
    [11] YANG T, HAN E, WANG X, et al. Surface decoration of polyimide fibre with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers[J]. Applied Surface Science,2017,416:200-212. doi: 10.1016/j.apsusc.2017.04.166
    [12] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [13] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样): GB/T 529—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of tear strength(Trouser, angle and crescent test pieces): GB/T 529—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [14] 中国国家标准化管理委员会. 橡胶袖珍硬度计压入硬度试验方法: GB/T 531—1999[S]. 北京: 中国标准出版社, 1999.

    Standardization Administration of the People’s Republic of China. Rubber-Determination of indentation hardness by means of pocket hardness meters: GB/T 531—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [15] 中国国家标准化管理委员会. 硫化橡胶回弹性的测定: GB/T 1681—2009[S]. 北京:中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Rubber-Determination of rebound resilience of vulcanizates: GB/T 1681—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [16] MERLINI C, SOLDI V, BARRA G M. Influence of fibre surface treatment and length on physico-chemical properties of short random banana fibre-reinforced castingor oil polyurethane composites[J]. Polymer Testing,2011,30:833-840. doi: 10.1016/j.polymertesting.2011.08.008
    [17] 艾青松, 陈虹, 赵磊, 等. 反应温度对PTMG-MDI型聚氨酯弹性体结构及性能的影响[J]. 塑料科技, 2017, 45(1):46-50.

    AI Q S, CHEN H, ZHAO L, et al. Influence of reaction temperature on structure and properties of PTMG-MDI type polyurethane elastomer[J]. Plastics Science and Technology,2017,45(1):46-50(in Chinese).
    [18] 白静静, 尹建宇, 高雄. 异氰酸酯功能化氧化石墨烯/热塑性聚氨酯弹性体复合材料的制备与性能[J]. 复合材料学报, 2018, 35(7):1683-1690.

    BAI J J, YIN J Y, GAO X. Preparation and characterization of isocyanate functionalized graphene oxide/thermoplastic polyurethane elastomer composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1683-1690(in Chinese).
    [19] 刘立峰, 姜志国, 周亨近, 等. 新型端氨基聚醚的合成[J]. 北京化工大学学报(自然科学版), 2005(1):103-105.

    LIU L F, JIANG Z G, ZHOU H J, et al. Synthesis of a new polyoxyalkyleneamine[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition),2005(1):103-105(in Chinese).
    [20] ZUO Y F, LIA W H, LI P, et al. Preparation and characterization of polylactic acid-g-bamboo fibre based on in-situ solid phase polymerization[J]. Industrial Crops and Products,2018,123:646-653. doi: 10.1016/j.indcrop.2018.07.024
    [21] XIE J L, HSE C Y, SHUPE T F, et al. Extraction and characterization of holocellulose fibres by microwave-assisted selective liquefaction of bamboo[J]. Journal of Applied Polymer Science,2016,43394:1.
    [22] LI Y, JIANG L Y, XIONG C D, et al. Effect of different surface treatment for bamboo fibre on the crystallization behavior and mechanical property of bamboo fibre/nanohydroxyapatite/poly(lactic-co-glycolic) composite[J]. Industrial Engineering Chemistry Research,2015,54:12017-12024. doi: 10.1021/acs.iecr.5b02724
    [23] 王春红, 刘胜凯, 叶张龙. 竹纤维的表面能分析及其增强PP复合材料的力学性能[J]. 工程塑料应用, 2014, 42(12):23-28.

    WANG C H, LIU S K, YE Z L. Bamboo fibre surface energy analysis and its influence on mechanical properties of bamboo fibre reinforced polypropylene composite[J]. Engineering Plastics Application,2014,42(12):23-28(in Chinese).
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  373
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-20
  • 录用日期:  2020-10-28
  • 网络出版日期:  2020-11-16
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回