留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磺酸基改性二维Ti3C2Tx纳米材料制备与Pb2+吸附性能

李晴晴 蒋豪丽 葛梦妮 杨彦 郭风 龙云良 张建峰

李晴晴, 蒋豪丽, 葛梦妮, 等. 磺酸基改性二维Ti3C2Tx纳米材料制备与Pb2+吸附性能[J]. 复合材料学报, 2021, 38(11): 3872-3883. doi: 10.13801/j.cnki.fhclxb.20210425.003
引用本文: 李晴晴, 蒋豪丽, 葛梦妮, 等. 磺酸基改性二维Ti3C2Tx纳米材料制备与Pb2+吸附性能[J]. 复合材料学报, 2021, 38(11): 3872-3883. doi: 10.13801/j.cnki.fhclxb.20210425.003
LI Qingqing, JIANG Haoli, GE Mengni, et al. Study on preparation of two-dimensional Ti3C2Tx nanomaterials modified by sulfonic acid groups and the adsorption performance of lead(II) ion[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3872-3883. doi: 10.13801/j.cnki.fhclxb.20210425.003
Citation: LI Qingqing, JIANG Haoli, GE Mengni, et al. Study on preparation of two-dimensional Ti3C2Tx nanomaterials modified by sulfonic acid groups and the adsorption performance of lead(II) ion[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3872-3883. doi: 10.13801/j.cnki.fhclxb.20210425.003

磺酸基改性二维Ti3C2Tx纳米材料制备与Pb2+吸附性能

doi: 10.13801/j.cnki.fhclxb.20210425.003
基金项目: 国家重点研发计划(2018YFC1508704)
详细信息
    通讯作者:

    张建峰,博士,教授,博士生导师,研究方向为功能复合材料研发及应用 E-mail:jfzhang@hhu.edu.cn

  • 中图分类号: TB332

Study on preparation of two-dimensional Ti3C2Tx nanomaterials modified by sulfonic acid groups and the adsorption performance of lead(II) ion

  • 摘要: 对二维Ti3C2Tx材料进行了磺酸基团接枝改性(Ti3C2Tx—SO3H),表征了改性前后微观结构的变化,研究了对重金属Pb2+的吸附行为与机制。XRD、FTIR及EDS表明磺酸基团在Ti3C2Tx表面成功接枝,而SEM则发现Ti3C2Tx−SO3H呈现较Ti3C2Tx更轻薄的层状结构。改性后,Ti3C2Tx—SO3H对重金属Pb2+20 min内达到吸附平衡,最大吸附量达到733.6 mg·g−1,较Ti3C2Tx吸附量提升了23%,且吸附量随着pH(2~6)的增加而逐渐增大,在Mg2+、Ca2+、Co2+、Zn2+等共存离子的干扰下,仍保持较高的吸附水平。机制分析表明,改性前后吸附过程均符合准二级动力学模型和Langmuir吸附等温线拟合模型,以单分子层化学吸附为主,但由于磺酸基团提供了更多的吸附饱和活性位点,并提高了Ti3C2Tx在水溶液中的分散性,使改性后对Pb2+吸附性能更优异。

     

  • 图  1  Ti3C2Tx表面接枝磺酸基团(Ti3C2Tx—SO3H)示意图

    Figure  1.  Schematic diagram of grafting sulfonic acid groups on the surface of Ti3C2Tx (Ti3C2Tx—SO3H)

    图  2  Ti3C2Tx和Ti3C2Tx—SO3H的XRD图谱 (a) 和FTIR图谱 (b)

    Figure  2.  XRD patterns (a) and FTIR spectra (b) of Ti3C2Tx and Ti3C2Tx—SO3H

    图  3  Ti3C2Tx ((a), (c)) 和Ti3C2Tx—SO3H ((b),(d)) 的SEM图像和EDS图谱

    Figure  3.  SEM images and EDS patterns of Ti3C2Tx ((a), (c)) and Ti3C2Tx—SO3H ((b),(d))

    图  4  不同质量Ti3C2Tx (a) 和Ti3C2Tx—SO3H (b) 吸附30 mg·L−1 Pb2+的相对浓度对比图

    Figure  4.  Comparison diagrams of the relative concentration of 30 mg·L−1 Pb2+ adsorbed by Ti3C2Tx (a) and Ti3C2Tx—SO3H (b) of different weights

    图  5  Ti3C2Tx (a) 和Ti3C2Tx—SO3H (b) 对低浓度Pb2+的吸附量曲线

    Figure  5.  Adsorption capacity curves of low concentration Pb2+ by Ti3C2Tx (a) and Ti3C2Tx—SO3H (b)

    图  6  Ti3C2Tx (a) 和Ti3C2Tx—SO3H (b) 对高浓度Pb2+的吸附量曲线

    Figure  6.  Adsorption capacity curves of high concentration Pb2+ by Ti3C2Tx (a) and Ti3C2Tx—SO3H (b)

    图  7  Ti3C2Tx—SO3H在不同pH下对30 mg·L−1 Pb2+的吸附量曲线

    Figure  7.  Adsorption capacity diagrams of 30 mg·L−1 Pb2+ by Ti3C2Tx—SO3H at different pH

    图  8  溶液中共存离子对Ti3C2Tx—SO3H吸附Pb2+的影响([Pb2+]=30 mg·L−1, [M2+]=30 mg·L−1, M=Mg, Ca, Co, Zn)

    Figure  8.  Effect of coexisting cations in solution on Ti3C2Tx—SO3H adsorbing Pb2+ ([Pb2+]=30 mg·L−1, [M2+]=30 mg·L−1, M= Mg, Ca, Co, Zn)

    图  9  Ti3C2Tx—SO3H吸附Pb2+后的SEM图像 ((a), (b)) 和EDS图谱 ((d)~(h))

    Figure  9.  SEM images ((a), (b)) and EDS patterns ((d)-(h)) of Ti3C2Tx—SO3H after adsorbing Pb2+

    图  10  Ti3C2Tx (a) 和Ti3C2Tx—SO3H (b) 吸附Pb2+的等温吸附曲线拟合曲线

    Figure  10.  Fitting curves of adsorption isotherm curves of Pb2+ adsorbed by Ti3C2Tx (a) and Ti3C2Tx—SO3H (b)

    图  11  Ti3C2Tx ((a1), (a2), (a3)) 和Ti3C2Tx—SO3H ((b1), (b2), (b3))吸附Pb2+的动力学模型拟合曲线((a1,b1) 准一级吸附动力学模型;(a2,b2) 准二级吸附动力学模型;(a3, b3) 颗粒内扩散模型)

    Figure  11.  Kinetic equation fitting curves of Pb2+ adsorbed by Ti3C2Tx ((a1), (a2), (a3)) and Ti3C2Tx—SO3H ((b1), (b2), (b3)) ((a1, b1) Pseudo-first-order adsorption kinetic model; (a2, b2) Pseudo-second-order adsorption kinetic model; (a3, b3) Intra-particle diffusion model)

    图  12  Ti3C2Tx—SO3H材料对Pb2+的吸附机制图

    Figure  12.  Adsorption mechanism of Ti3C2Tx—SO3H on Pb2+

    表  1  不同吸附剂对Pb2+的吸附量对比表

    Table  1.   Comparison table of Pb2+ adsorption capacity of different adsorbents

    Adsorbentsqmax/(mg·g−1)pHT/℃Ref.
    Amino-modified attapulgite 49.0 6.0 25 [26]
    CNFs/GO/Fe3O4 composite materials 126.5 6.0 25 [27]
    Saponified muskmelon peel 167.9 4-6.4 25 [28]
    Seaweed laminaria japonica 279.5 3-4.8 25 [29]
    Silanized red mud 361.0 6 25 [30]
    GO-LDH composite materials 387.7 5.2 25 [31]
    GO 757.6 3.0 25 [32]
    Ti3C2Tx 38.5 6.0 40 [16]
    Ti3C2Tx 594.3 6.0 25 This work
    Ti3C2Tx—SO3H 733.6 5.9 25 This work
    Notes: qmax—maximum adsorption capacity; CNFs—Cellulose nanofibrills; GO—Graphene oxide; GO-LDH—Graphene oxide-double layer magnesium & aluminum hydroxide.
    下载: 导出CSV

    表  2  25℃下二维Ti3C2Tx和Ti3C2Tx—SO3H吸附Pb2+的吸附等温式参数表

    Table  2.   Ti3C2Tx and Ti3C2Tx—SO3H adsorption isotherm parameters of Pb2+ at 25℃

    SampleDosage/gLangmuirFreundlich
    qm/(mg·g−1)KL/(L·mg−1)R2nkF/(mg1-(1/n) ·L1/n·g−1)R2
    Ti3C2Tx 0.02 793.65 0.0001 0.9604 0.0039 1.2616 0.9817
    0.04 300.48 0.0229 0.9338 0.0001 1.0442 0.9694
    Ti3C2Tx—SO3H 0.005 199.01 0.0073 0.9366
    0.01 811.10 0.0003 0.9309
    Notes: qm—Maximum saturation adsorption capacity; R—Correlation coefficient; KL—Langmuir adsorption equilibrium constant; KF, n—Freundlich adsorption equilibrium constant, denotes adsorption capacity and density in adsorption, respectively.
    下载: 导出CSV
  • [1] 任春溶. 磁性纳米复合材料的制备及其对重金属离子的吸附性能研究[D]. 杭州: 浙江大学, 2017.

    REN Chunrong. Preparation of magnetic nanocomposites for adsorption of heavy metal ions[D]. Hangzhou: Zhe-jiang University, 2017(in Chinese).
    [2] LIANG Qianqian, YU Liuhua, JIANG Wei, et al. One-pot synthesis of magnetic graphitic carbon nitride photocatalyst with synergistic catalytic performance under visible-light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry,2017,335:165-173. doi: 10.1016/j.jphotochem.2016.11.012
    [3] 洪亚军, 冯承莲, 徐祖信, 等. 重金属对水生生物的毒性效应机制研究进展[J]. 环境工程, 2019, 37(11):1-9.

    HONG Yajun, FENG Chenglian, XU Zuxin, et al. Advances on ecotoxicity effects of heavy metals to aquatic organisms and the mechanisms[J]. Environmental Engineering,2019,37(11):1-9(in Chinese).
    [4] SONG Yueqin, ZHOU Xiaolong, WANG Jin an. Adsorption performance of activated carbon for methane with low concentration at atmospheric pressure[J]. Energy Sources Part A Recovery Utilization and Environmental Effects,2021,43(11):1337-1347. doi: 10.1080/15567036.2019.1636903
    [5] 武雪梅. 天然矿物类吸附剂的复合改性及脱氮除磷性能研究[D]. 武汉: 华中科技大学, 2019.

    WU Xuemei. Study on the compound modification of natural mineral adsorbents to remove nitrogen and phosphorus[D]. Wuhan: Huazhong University of Science & Technology, 2019(in Chinese).
    [6] 林驰浩, 徐劼, 王嘉俊, 等. 生物质材料在重金属废水处理中的应用及其研究进展[J]. 广州化工, 2020, 48(5):24-26, 104. doi: 10.3969/j.issn.1001-9677.2020.05.014

    LIN Chihao, XU Jie, WANG Jiajun, et al. Application and research progress on biomass materials in heavy metal wastewater treatment[J]. Guangzhou Chemical Industry,2020,48(5):24-26, 104(in Chinese). doi: 10.3969/j.issn.1001-9677.2020.05.014
    [7] ZHOU Dawei. Multifunctional MXene nanosheets as host materials with superior adsorption ability for enhanced electrochemical performance[J]. Ionics,2021,27:1291-1296. doi: 10.1007/s11581-020-03863-4
    [8] ZHANG Shan, TIAN Lidong, CHEN Xiaohu, et al. Ultralight graphene/carbon nanofibers/carbon nanotubes aerogels with thermal insulating and hot-oil adsorption performance[J]. Journal of Materials Science,2021,56(11):7409-7419.
    [9] ABGHOUI Y, SIGTRYGGSSON S B, EGILL S. Biomimetic nitrogen fixation catalyzed by transition metal sulfide surfaces in an electrolytic cell[J]. ChemSusChem,2019,12(18):4265-4273. doi: 10.1002/cssc.201901429
    [10] SUN Yingzhu, CHEN Ming, LIU Hao, et al. Adsorptive removal of dye and antibiotic from water with functionalized zirconium-based metal organic framework and graphene oxide composite nanomaterial UiO-66-(OH)2/GO[J]. Applied Surface Science,2020,525:146614. doi: 10.1016/j.apsusc.2020.146614
    [11] HE Peng, CAO Maosheng, CAI Yongzhu, et al. Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding[J]. Carbon,2020,157:80-89. doi: 10.1016/j.carbon.2019.10.009
    [12] YASAEI P, TU Qing, XU Yaobin, et al. Mapping hot spots at heterogeneities of few-layer Ti3C2 MXene Sheets[J]. ACS Nano,2019,13(3):3301-3309. doi: 10.1021/acsnano.8b09103
    [13] 周晓伟. Ti3C2Tx的制备表征及其SERS应用研究[D]. 天津: 天津大学, 2018.

    ZHOU Xiaowei. The synthesis, characterization of Ti3C2Tx and applying on SERS study[D]. Tianjin: Tianjin University, 2018(in Chinese).
    [14] ZHANG Yujuan, LAN Jianhui, WANG Lin et al. Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study[J]. Journal of Hazardous Materials,2016,308(308):402-410.
    [15] FARD A K, MCKAY G, CHAMOUN R, et al. Barium removal from synthetic natural and produced water using MXene as two dimensional (2D) nanosheet adsorbent[J]. Chemical Engineering Journal,2017,317:331-342. doi: 10.1016/j.cej.2017.02.090
    [16] JUN B M, HER N G, PARK C M, et al. Effective removal of Pb (II) from synthetic wastewater using Ti3C2Tx MXene[J]. Environmental Science: Water Research & Technology,2020,6(1):173-180.
    [17] 田程程. 新型多功能纳米复合材料的合成及其催化性能研究[D]. 上海: 华东理工大学, 2014.

    TIAN Chengcheng. Synthesis and catalytic performance of novel multifunctional nanocomposites[D]. Shanghai: East China University of Science and Technology, 2014(in Chinese).
    [18] ZHANG Pengcheng, WANG Lin, HUANG Zhiwei, et al. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption[J]. ACS Applied Materials & Interfaces,2020,12:15579-15587.
    [19] SEHYEONG L, HYUNSU P, JIN H K, et al. Polyelectrolyte-grafted Ti3C2-MXenes stable in extreme salinity aquatic conditions for remediation of contaminated subsurface environments[J]. RSC Advances,2020,10:25966-25978. doi: 10.1039/D0RA04348F
    [20] LI Yahui, DENG Yanan, ZHANG Jianfeng, et al. Synthesis of restacking-free wrinkled Ti3C2Tx monolayers by sulfonic acid group grafting and N-doped carbon decoration for enhanced supercapacitor performance[J]. Journal of Alloys and Compounds,2020,842:155985. doi: 10.1016/j.jallcom.2020.155985
    [21] LI Yahui, DENG Yanan, ZHANG Jianfeng, et al. Tunable energy storage capacity of two-dimensional Ti3C2Tx modified by a facile two-step pillaring strategy for high performance supercapacitor electrodes[J]. Nanoscale,2019,11(45):21981-21989. doi: 10.1039/C9NR07259D
    [22] OBAID S A. Langmuir, Freundlich and Tamkin adsorption isotherms and kinetics for the removal aartichoke tournefortii straw from agricultural waste[J]. Journal of Physics Conference Series,2020,1664:012011. doi: 10.1088/1742-6596/1664/1/012011
    [23] MARCU C, VARODI C, BALLA A. Adsorption kinetics of chromium (VI) from aqueous solution using an anion exchange resin[J]. Analytical Letters,2020,54:140-149.
    [24] SI Y C, SAMULSKI E T. Synthesis of water soluble graphene[J]. Nano Letters,2008,8:1679-1682. doi: 10.1021/nl080604h
    [25] SUGANUMA S, NAKAJIMA K, KITANO M et al. SO3H-bearing mesoporous carbon with highly selective catalysis[J]. Microporous and Mesoporous Materials,2011,143(2-3):443-450. doi: 10.1016/j.micromeso.2011.03.028
    [26] XU Lei, LIU Yani, WANG Jingang, et al. Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite: kinetic, thermal dynamic and DFT studies[J]. Journal of Hazardous Materials,2021,404:124140. doi: 10.1016/j.jhazmat.2020.124140
    [27] HOSSEINI M, DIZAJI H Z, TAGHAVI M, et al. Preparation of ultra-lightweight and surface-tailored cellulose nanofibril composite cryogels derived from date palm waste as powerful and low-cost heavy metals adsorbent to treat aqueous medium[J]. Industrial Crops and Products,2020,154:112696. doi: 10.1016/j.indcrop.2020.112696
    [28] HUANG Kai, ZHU Hongmin. Removal of Pb2+ from aqueous solution by adsorption on chemically modified muskmelon peel[J]. Environmental Science and Pollution Research International,2013,20(7):4424-4434. doi: 10.1007/s11356-012-1361-7
    [29] GHIMIRE K N, INOUE K, OHTO K, et al. Adsorption study of metal ions onto crosslinked seaweed Laminaria japonica[J]. Bioresource Technology,2008,99(1):32-37. doi: 10.1016/j.biortech.2006.11.057
    [30] 刘江龙, 郭焱, 何小山, 等. 硅烷化赤泥的制备及其对水中铅离子吸附性能分析[J]. 环境工程, 2019, 37(11):36-44.

    LIU Jianglong, GUO Yan, HE Xiaoshan, et al. Preparation of silanized red mud and its adsorption properties for lead ions in water[J]. Environmental Engineering,2019,37(11):36-44(in Chinese).
    [31] 周博秋, 李慧强, 廖维, 等. GO-LDH复合材料对水中铅离子的吸附性能[J]. 中国给水排水, 2019, 35(17):105-111.

    ZHOU Boqiu, LI Huiqiang, LIAO Wei, et al. Adsorption properties of GO-LDH composite materials to lead ion in water[J]. China Water & Wastewater,2019,35(17):105-111(in Chinese).
    [32] 梁程. 还原条件下氧化石墨烯对铅离子吸附/解吸附性能的研究[D]. 西安: 西安建筑科技大学, 2016.

    LIANG Cheng. A study on oxide graphene’s adsorption and desorption property of lead in the reductive condition[D]. Xi’an: Xi’an University of Architecture and Technology, 2016(in Chinese).
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  904
  • HTML全文浏览量:  328
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 录用日期:  2021-04-19
  • 网络出版日期:  2021-04-26
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回