留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响

李玮 程先华

李玮, 程先华. 稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响[J]. 复合材料学报, 2020, 37(11): 1-9
引用本文: 李玮, 程先华. 稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响[J]. 复合材料学报, 2020, 37(11): 1-9
Wei LI, Xianhua CHENG. Effect of rare earth Ce grafted carbon nanotubes-carbon fiber multi-scale reinforcement on the interfacial properties of epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica.
Citation: Wei LI, Xianhua CHENG. Effect of rare earth Ce grafted carbon nanotubes-carbon fiber multi-scale reinforcement on the interfacial properties of epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica.

稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响

基金项目: 国家自然科学基金 (51975359);摩擦学国家重点实验摩擦学科学基金(SKLTKF17A02)
详细信息
    通讯作者:

    程先华,博士,教授,博士生导师,研究方向为纳米表面工程及摩擦学 E-mail:xhcheng@sjtu.edu.cn

  • 中图分类号: TB332

Effect of rare earth Ce grafted carbon nanotubes-carbon fiber multi-scale reinforcement on the interfacial properties of epoxy resin matrix composites

  • 摘要: 将马来酰亚胺官能化的多壁碳纳米管(CNTs)与碳纤维(CF)混合并通过CeCl3处理,得到CNTs-CF多尺度增强体,采用傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)对增强体的表面物理化学状态进行表征;以环氧树脂(EP)为基体,通过模压法制备了CNTs-CF/EP,对其力学性能和断口形貌进行了分析,探讨CNTs-CF多尺度增强体对EP复合材料界面性能的影响。结果表明:通过Ce桥接作用,可以将改性后的CNTs化学接枝在CF表面,以同时解决CF与树脂基体间界面结合弱以及CNTs不易分散的问题,有效改善了增强体与基体的界面性能。因此CNTs-CF/EP的拉伸强度和杨氏模量相对CF/EP的分别提高了36.76%和71.57%;相对CeCl3改性CF(RECF)/EP的分别提高了24.79%和52.17%。采用稀土Ce的化学接枝法成功制备出CNTs-CF多尺度增强体,为获得高级轻质树脂基复合材料提供了一种环境友好的新方法。
  • 图  1  多壁碳纳米管(CNTs)与马来酰亚胺的Diels-alder反应

    Figure  1.  Diels-alder reaction of Multi-walled carbon nanotubes(CNTs) with maleimide

    图  2  CNTs和马来酰亚胺官能化的CNTs(M-CNTs)的化学状态表征

    Figure  2.  Chemical state characterization of CNTs and maleimide functionalised CNTs(M-CNTs)

    图  3  不同的增强体的O1s的XPS 谱图

    Figure  3.  XPS spectra of O1s of different reinforcements

    图  4  Ce与O成键示意图

    Figure  4.  Schematic diagram of Ce and O bonding

    图  5  不同的增强体的表面形貌

    Figure  5.  SEM images of different reinforcements

    图  6  EP复合材料的力学性能

    Figure  6.  Mechanical properties of EP composites

    图  7  EP复合材料拉伸断裂截面的SEM形貌

    Figure  7.  SEM morphology of tensile fracture cross section of EP composites

    图  8  EP复合材料的断裂机制模型

    Figure  8.  Fracture mechanism models of EP composites

    表  1  不同的增强体表面元素种类和原子分数(at%)

    Table  1.   Types and atomic fractions of surface elements in different reinforcements(at%)

    ElementCFCF modified by CeCl3(RECF)CNTs-CF
    C 85.59 71.90 77.49
    N 3.21 5.91 3.39
    O 11.06 18.96 16.05
    Ce 0.14 3.23 3.07
    下载: 导出CSV
  • [1] RHEEI, KIM JH, PARK SH, et al. Mechanical and electrical properties of cement paste incorporated with pitch-based carbon fiber[J]. Carbon Letters,2017,23(1):22-29.
    [2] ANDIDEH M, ESFANDEH M. Effect of surface modification of electrochemically oxidized carbon fibers by grafting hydroxyl and amine functionalized hyperbranched polyurethanes on interlaminar shear strength of epoxy composites[J]. Carbon,2017,123:233-242. doi:  10.1016/j.carbon.2017.07.035
    [3] HU L, HECHT DS, GRÜNERG. Carbon nanotube thin films: fabrication, properties, and applications[J]. CHEMICAL REVIEWS,2010,110(10):5790-5844. doi:  10.1021/cr9002962
    [4] COLEMAN J N, KHAN U A, GUN'KO Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced Materials,2006,18(6):689-706. doi:  10.1002/adma.200501851
    [5] 郑林宝, 王延相, 陈纪强, 等. CF-CNTs多尺度增强体的制备及CF-CNTs/环氧树脂复合材料力学性能[J]. 复合材料学报, 2017, 034(011):2428-2436.

    ZHENG L B, WANG Y X, CHEN J Q, et al. Preparation of CF-CNTs multi-scale reinforcement and mechanical properties of CF-CNTs/epoxy composites[J]. Journal of Composites,2017,034(011):2428-2436(in Chinese).
    [6] COLEMAN J N, KHAN U, BLAU WJ, et al. Small but Strong: A review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon,2006(9):1624-1652.
    [7] QIAN H, GREENHALGH E S, SHAFFER M SP, et al. Carbon Nanotube-Based Hierarchical Composites: A Review[J]. Journal of Materials Chemistry,2010(23):4751.
    [8] KIM KJ, KIM J, YUWR, et al. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface[J]. Carbon,2013,54:258-267. doi:  10.1016/j.carbon.2012.11.037
    [9] DE GREEF N, ZHANG L, MAGREZ A, et al. Direct growth of carbon nanotubes on carbon fibers: Effect of the CVD parameters on the degradation of mechanical properties of carbon fibers[J]. Diamond & Related Materials,2015,51:39-48.
    [10] BEDI, HARPREET, S, et al. Quantitative determination of size and properties of interphases in carbon nanotube-based multiscale composites[J]. Carbon: An International Journal Sponsored by the American Carbon Society,2018.
    [11] YAO X, JIANG J, XU C, et al. Improved interfacial properties of carbon fiber/epoxy composites through graphene oxide-assisted deposition of carbon nanotubes on carbon fiber surface[J]. Fibers and Polymers,2017,18(7):1323-1329. doi:  10.1007/s12221-017-1013-0
    [12] YAO X, GAO X, JIANGJ, et al. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites[J]. Composites Part B-Engineering,2018,132:170-177. doi:  10.1016/j.compositesb.2017.09.012
    [13] ZHENGH, LI Q, YUC, et al. The direct architecture of carbon fiber-carbon nanofiber hierarchical reinforcements for superior interfacial properties of CF/epoxy composites[J]. Polymers For Advanced Technologies,2019,30(3):620-630. doi:  10.1002/pat.4498
    [14] 梁馨, 方洲, 罗丽娟, 等. 碳纳米管改性对碳/环氧复合材料层间性能的影响[J]. 宇航材料工艺, 2016, 46(4):56-59.

    LIANG X, FANG Z, LUO L J, et al. Effect of carbon nanotube modification on interlaminal properties of C/E composite[J]. Aerospace Materials Technology,2016,46(4):56-59(in Chinese).
    [15] 齐乐华, 舒扬, 李贺军, 等. 电泳沉积CNTs掺杂C/C复合材料的微观组织与弯曲性能[J]. 无机材料学报, 2016, 31(2).

    QI L H, SHU Y, LI H J, et al. Microstructures and flexural properties of C/C composites doped with CNTs by electrophoretic deposition[J]. Journal of Inorganic Materials,2016,31(2)(in Chinese).
    [16] YAO H, SUI X, ZHAO Z, et al. Optimization of interfacial microstructure and mechanical properties of carbon fiber/epoxy composites via carbon nanotube sizing[J]. Applied Surface Science,2015,347:583-590. doi:  10.1016/j.apsusc.2015.04.146
    [17] PENG Q, HE X, LI Y, et al. Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites[J]. Journal of Materials Chemistry,2012,22(13):5928. doi:  10.1039/c2jm16723a
    [18] JIANG, BO, XIE, et al. Interfacially reinforced methylphenyl silicone resin composites by chemically grafting multiwall carbon nanotubes onto carbon fibers[J]. Composites Part B Engineering,2015:82.
    [19] WU G, MA L, LIU L, et al. Interface enhancement of carbon fiber reinforced methylphenyl silicone resin composites modified with silanized carbon nanotubes[J]. Materials & design,2015,89:1343-1349.
    [20] ISLAM M S, DENG Y, TONG L, et al. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: Towards next generation aerospace composites and energy storage applications[J]. Carbon,2016,96:701-710. doi:  10.1016/j.carbon.2015.10.002
    [21] MEI L, HE X, LI Y, et al. Grafting carbon nanotubes onto carbon fiber by use of dendrimers[J]. Materials Letters,2010,64(22):2505-2508. doi:  10.1016/j.matlet.2010.07.056
    [22] 王柏臣, 蔡安宁, 李俊杰, 等. HDI接枝碳纳米管/碳纤维混杂多尺度复合材料的制备和性能[J]. 沈阳航空航天大学学报, 2016(4):48-54.

    WANG B C, CAI A N, LI J J, et al. Fabrication and properties of HDI grafted carbon nanotube/carbon fiber hybrid multi-scale composites[J]. Journal of Shenyang University of Aeronautics and Astronautics,2016(4):48-54(in Chinese).
    [23] CUI H, JIN Z, ZHENG D, et al. Effect of carbon fibers grafted with carbon nanotubes on mechanical properties of cement-based composites[J]. Construction and Building Materials,2018,181:713-720. doi:  10.1016/j.conbuildmat.2018.06.049
    [24] CHEN Q, PENG Q, ZHAO X, et al. Grafting carbon nanotubes densely on carbon fibers by poly(propylene imine) for interfacial enhancement of carbon fiber composites[J]. Carbon,2019,158:704-710.
    [25] SHANGGUAN QQ, CHENG XH. Friction and wear of rare earths modified carbon fibers filled PTFE composite under dry sliding condition. Applied surface Science, 2007, 253(22): 9000-9006.
    [26] SUN Z Y, CHENG X H. Investigation of carbon nanotube-containing film on silicon substrates and its tribological behavior[J]. Applied Surface Science,2015,355:272-278. doi:  10.1016/j.apsusc.2015.07.130
    [27] JIANG M R, ZHOU H, CHENG X H. Effect of rare earth surface modification of carbon nanotubes on enhancement of interfacial bonding of carbon nanotubes reinforced epoxy matrix composites[J]. Journal of Materials Science,2019,54(14):10235-10248. doi:  10.1007/s10853-019-03631-4
    [28] 中国国家标准化管理委员会(标准制定单位). 塑料拉伸性能的测定: GB/T1040-2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China, Determination of tensile properties of plastics: GB/T1040-2006[S]. Beijing: China Standards Press, 2006 (in Chinese).
    [29] SARKAR S, BEKYAROVA E, NIYOGI S, et al. Diels-Alder chemistry of graphite and graphene: graphene as diene and dienophile[J]. Journal of the American Chemical Society,2011,133(10):3324-3327. doi:  10.1021/ja200118b
    [30] 王怡, 冯展彬, 左洪礼, 等. 基于Diels-Alder反应的热可逆高导电硅橡胶/碳管复合材料的制备[J]. 高分子学报, 2019(5).

    WANG Y, FENG Z B, ZUO H L, et al. Preparation of thermally reversible highly conductive silicone rubber/carbon tube composites based on Diels-Alder reaction[J]. Journal of Polymers,2019(5)(in Chinese).
    [31] LIU W, ZHANG S, HAO L, et al. Fabrication of carbon nanotubes/carbon fiber hybrid fiber in industrial scale by sizing process[J]. Applied Surface science,2013,284:914-920. doi:  10.1016/j.apsusc.2013.08.045
    [32] LI L Z, WANG J, LIU W B, et al. Remarkable improvement in interfacial shear strength of carbon fiber/epoxy composite by large-scare sizing with epoxy sizing agent containing amine-treated MWCNTs[J]. Polymer Composites,2018,39(8):2734-2742. doi:  10.1002/pc.24263
    [33] KÜLAH E, MAROT L, STEINER R, et al. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons[J]. Scientific Reports,2017,7:43369. doi:  10.1038/srep43369
    [34] 王帅, 钟宏, 张骞, 等. 烷氧羰基硫脲树脂与Ag<sup>+</sup>的螯合机理[J]. 材料导报, 2010, 24(10):26-28.

    WANG S, ZHONG H, ZHANG Q, et al. The Chelate Mechanism of Alkoxy carbonyl Thiourea Resin and Ag<sup>+</sup>[J]. Materials Herald,2010,24(10):26-28(in Chinese).
    [35] 张一帆, 王晓钧, 盛浩强, 等. 短切玻纤/低密度不饱和聚酯树脂材料的力学性能[J]. 热固性树脂, 2017(1):44-49, 54.

    ZHANG Y F, WANG X J, SHENG H Q, et al. Mechanical properties of the chopped glass fiber/low density unsaturated polyester resin materials[J]. Thermosetting Resin,2017(1):44-49, 54(in Chinese).
    [36] Chen J X, Tuo W Y, WAN C F, et al. Shear test method for and mechanical characteristics of short basalt fiber reinforced polymer composite materials[J]. Journal of Applied Polymer Science,2018,135(16):46078. doi:  10.1002/app.46078
    [37] 卓航, 李是卓, 韩恩林, 等. 高强高模聚酰亚胺纤维/环氧树脂复合材料力学性能与破坏机制[J]. 复合材料学报, 2019, 36(9):2101-2109.

    ZHUO H, LI S Z, HAN E L, et al. Mechanical properties and failure mechanism of high strength and high modulus polyimide fiber/epoxy composites[J]. Journal of Composites,2019,36(9):2101-2109(in Chinese).
    [38] 刘静, 陈勃翰, 李刚, 等. 激光改性纤维对其增强环氧树脂复合材料力学性能的影响[J]. 复合材料学报, 2017, 034(012):2708-2714.

    LIU J, CHEN B H, LI G, et al. Effect of laser modified fiber on mechanical properties of fibers reinforced epoxy resin composites[J]. Journal of Composite Materials,2017,034(012):2708-2714(in Chinese).
  • [1] 郎风超, 朱静, 李云芳, 潘俊臣, 姜爱峰, 杨诗婷, 邢永明.  SEM环境下纤维推出技术结合电子束云纹技术表征复合材料界面细观力学性能, 复合材料学报. 2020, 37(6): 1383-1389. doi: 10.13801/j.cnki.fhclxb.20190712.001
    [2] 王彩萍, 张家华, 王晓杰.  各向异性不同含量羟基铁粉颗粒/磁性聚氨酯泡沫的可控力学和声学性能, 复合材料学报. 2020, 37(12): 1-9. doi: 10.13801/j.cnki.fhclxb.20200401.001
    [3] 王春红, 鹿超, 贾瑞婷, 陆鑫, 左恒峰, 王瑞.  洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能, 复合材料学报. 2020, 37(7): 1581-1589. doi: 10.13801/j.cnki.fhclxb.20191226.002
    [4] 张钊滟, 马帅, 卢鑫, 郑玉婴, 林腾飞.  壳聚糖-氧化石墨烯/热塑性聚氨酯复合材料的原位溶液聚合及性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200302.002
    [5] 高巧春, 张庆法, 任夏瑾, 卢文玉, 周亮, 蔡红珍.  造纸污泥/高密度聚乙烯复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1243-1250. doi: 10.13801/j.cnki.fhclxb.20191014.002
    [6] 薛彦庆, 郝启堂, 李新雷, 魏典, 李博, 余量量.  Mg对原位自生TiB2/Al-4.5Cu复合材料微观组织及力学性能的影响, 复合材料学报. 2020, 37(): 1-10.
    [7] 曹金营, 曹贺, 欧阳求保, 张荻.  多道次搅拌摩擦加工对SiCP/2A14铝合金复合材料显微组织和力学性能的影响, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200306.002
    [8] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [9] 王怡然, 高义民, 李烨飞, 赵四勇, 李梦婷.  石墨镀Sn调控对石墨/Cu复合材料组织及力学性能的影响, 复合材料学报. 2020, 37(): 1-10.
    [10] 胡江波, 薛向晨, 郑晓玲, 梁宪珠.  叠层滑移工艺对M21C层压板力学性能的影响, 复合材料学报. 2020, 37(5): 1184-1190. doi: 10.13801/j.cnki.fhclxb.20190816.001
    [11] 张庆法, 任夏瑾, 吴娟娟, 于文凡, 徐航, 蔡红珍.  活性炭/高密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(11): 1-9. doi: 10.13801/j.cnki.fhclxb.20200224.001
    [12] 卢文玉, 蔡红珍, 于文凡, 徐航, 韩祥生.  枣核/低密度聚乙烯复合材料的力学性能, 复合材料学报. 2020, 37(): 1-8. doi: 10.13801/j.cnki.fhclxb.20200000.00000
    [13] 黄鑫, 姜景山, 孙天洋, 蒋威.  玄武岩-碳纤维/矿渣混凝土力学性能正交试验, 复合材料学报. 2020, 37(7): 1743-1753. doi: 10.13801/j.cnki.fhclxb.20190930.001
    [14] 杨涛, 刘润爱, 王文先, 连俊杰, 郑凡林, 陈洪胜.  热轧高含量B4C颗粒增强Al基复合材料的成形性能, 复合材料学报. 2020, 37(): 1-10.
    [15] 周可可, 唐亚丽, 卢立新, 潘嘹, 丘晓琳.  氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能, 复合材料学报. 2020, 37(7): 1657-1666. doi: 10.13801/j.cnki.fhclxb.20191120.003
    [16] 陈宇飞, 代国庆, 田麒源, 董磊, 崔巍巍, 滕成君.  Al2O3与两种热塑性树脂协同改性双马来酰亚胺基复合材料微观结构与性能, 复合材料学报. 2020, 37(6): 1260-1267. doi: 10.13801/j.cnki.fhclxb.20190925.001
    [17] 董晓星, 金明生, 王礼明, 康杰, 朱栋杰, 计时鸣.  用于梯度功能研磨抛光盘的SiC或Al2O3颗粒/橡胶复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1434-1441. doi: 10.13801/j.cnki.fhclxb.20191030.003
    [18] 乔雪涛, 王朋, 闫存富, 许华威, 张力斌, 贾克, 杨泽, 吴隆.  钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能, 复合材料学报. 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
    [19] 孙伟, 柏跃磊, 张强, 刘玉坤, 朱春城.  碳纳米管-Ti3AlC2/AZ91D复合材料的微观组织及力学性能, 复合材料学报. 2020, 37(7): 1649-1656. doi: 10.13801/j.cnki.fhclxb.20191128.002
    [20] 郭小农, 王丽, 罗永峰, 徐航, 邹家敏.  CFRP增强铝合金叠层复合材料短柱力学性能, 复合材料学报. 2020, 37(): 1-13.
  • 加载中
计量
  • 文章访问数:  79
  • HTML全文浏览量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 录用日期:  2020-07-29

目录

    /

    返回文章
    返回