留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi/WO3复合光催化材料的制备及其抗菌性能

肖维 张柯杰 傅炀杰 郭佳允 张轶 王齐

肖维, 张柯杰, 傅炀杰, 等. Bi/WO3复合光催化材料的制备及其抗菌性能[J]. 复合材料学报, 2021, 38(12): 4198-4204. doi: 10.13801/j.cnki.fhclxb.20210312.002
引用本文: 肖维, 张柯杰, 傅炀杰, 等. Bi/WO3复合光催化材料的制备及其抗菌性能[J]. 复合材料学报, 2021, 38(12): 4198-4204. doi: 10.13801/j.cnki.fhclxb.20210312.002
XIAO Wei, ZHANG Kejie, FU Yangjie, et al. Preparation of Bi/WO3 composite photocatalytic materials with antibacterial properties[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4198-4204. doi: 10.13801/j.cnki.fhclxb.20210312.002
Citation: XIAO Wei, ZHANG Kejie, FU Yangjie, et al. Preparation of Bi/WO3 composite photocatalytic materials with antibacterial properties[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4198-4204. doi: 10.13801/j.cnki.fhclxb.20210312.002

Bi/WO3复合光催化材料的制备及其抗菌性能

doi: 10.13801/j.cnki.fhclxb.20210312.002
基金项目: 浙江省自然科学基金(LR18B070001);国家自然科学基金(21876154;21477114)
详细信息
    通讯作者:

    王齐,博士,教授,研究方向为光催化  E-mail:wangqi8327@zjgsu.edu.cn

  • 中图分类号: O643.36;O644.1

Preparation of Bi/WO3 composite photocatalytic materials with antibacterial properties

  • 摘要: 以WO3为基底,五水硝酸铋(Bi(NO3)3·5H2O)为铋源,通过紫外还原法在WO3表面沉积具有表面等离子体效应(SPR)的半金属Bi0,制备了具有可见光响应的Bi/WO3复合光催化材料。以大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)为实验对象,考察了所制备复合材料的光催化抗菌性能、结合结构和光电化学性质表征,对Bi的负载量进行了优化。研究发现:优选得到的0.6 mmol Bi/WO3能够在120 min内灭杀99%以上的细菌。进一步考察了灭菌机制,通过添加不同种类的捕获剂,结合电子顺磁共振(ESR)技术,发现羟基自由基(·OH)和超氧自由基(·O2)是导致E. coli失活的主要活性物种。

     

  • 图  1  WO3和不同比例Bi/WO3的XRD图谱

    Figure  1.  XRD spectra of WO3 and Bi/WO3 with different ratios

    图  2  0.6 mmol Bi/WO3的全谱、W4f和Bi4f的高分辨率XPS图谱

    Figure  2.  XPS spectra for 0.6 mmol Bi/WO3 total, W4f, Bi4f

    图  3  不同催化剂的UV-Vis DRS

    Figure  3.  UV-Vis DRS spectra of different catalysts

    图  4  不同催化剂的电流-时间(i-t)曲线 (a) 和光照下的EIS图谱 (b)

    Figure  4.  Current-time (i-t) curves (a) and EIS profiles (b) of different catalysts under light conditions

    图  5  不同催化剂对E. coliS. aureus的抗菌效果 ((a)、(b)) 和抗菌图片 ((c)、(d))

    Figure  5.  Antibacterial effects of different catalysts on E. coli and S. aureus ((a), (b)) and antibacterial images ((c), (d))

    图  6  不同催化剂和光源对E. coli ((a)、(c))和S. aureus ((b)、(d))的抗菌效果

    Figure  6.  Antibacterial effects of different catalysts and light sources on E. coli ((a), (c)) and S. aureus ((b), (d))

    图  7  不同捕获剂添加对0.6 mmol Bi/WO3E. coli的性能影响

    Figure  7.  Effects of different captures on the antibacterial performance of E. coli by 0.6 mmol Bi/WO3

    图  8  0.6 mmol Bi/WO3在黑暗和光照条件下的DMPO-O2·和−·OH

    Figure  8.  DMPO-O2· and −·OH of 0.6 mmol Bi/WO3 under dark and light

    图  9  WO3的平带电势 (a) 和光催化机制示意图 (b)

    Figure  9.  Schematic diagram of flat band potential (a) and photocatalytic mechanism of Bi/WO3(b)

  • [1] XIONG H, ZHOU H, SUN G, et al. Solvent-free self-assembly for scalable preparation of highly crystalline mesoporous metal oxides[J]. Angewandte Chemie International Edtion. in English,2020,27(59):11053-11060.
    [2] MOHAMMADI S, SOHRABI M, GOLIKAND A N, et al. Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology[J]. Journal of Photochemistry and Photobiology B: Biology,2016(161):217-221.
    [3] WANG P, HUANG B, QIN X, et al. Ag/AgBr/WO3·H2O: Visible-light photo-catalyst for bacteria destruction[J]. Inorganic Chemistry,2009,22(48):10697-10702.
    [4] ZHU W, LIU J, YU S, et al. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation[J]. Journal of Hazardous Materials,2016(318):407-416.
    [5] ARSHAD M, BILAL M, AHMAD N, et al. Synthesis and characteri-zation of Zn doped WO3 nanoparticles: Photocatalytic, antifungal and antibacterial activities evaluation[J]. Materials Research Express,2020,1(7):015407.
    [6] MOHAMMADI S, SOHRABI M, et al. Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology[J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 161: 217-221.
    [7] HASHEMI E, POURSALEHI R, DELAVARI H. Formation mechanisms, structural and optical properties of Bi/Bi2O3 one dimensional nanostructures prepared via oriented aggregation of bismuth based nanoparticles synthesized by DC arc discharge in water[J]. Materials Science in Semiconductor Processing,2019(89):51-58.
    [8] CHANG C, ZHU L, FU Y, et al. Highly active Bi/BiOI composite synthesized by one-step reaction and its capacity to degrade bisphenol a under simulated solar light irradiation[J]. Chemical Engineering Journal,2013(233):305-314.
    [9] CUI Z, DONG X, SUN Y, et al. Simultaneous introduction of oxygen vacancies and Bi metal onto the facet of Bi3O4Cl woven nanobelts for synergistically enhanced photocatalysis[J]. Nanoscale,2018,35(10):16928-16934.
    [10] ZHOU Y, REN S, DONG Q, et al. One-pot preparation of Bi/Bi2WO6 reduced graphene oxide as a plasmonic photocatalyst with improved activity under visible light[J]. RSC Advances,2016,105(6):102875-102885.
    [11] MAO J, ZHANG Q, LI P, et al. Geometric architecture design of ternary composites based on dispersive WO3 nanowires for enhanced visible-light-driven activity of refractory pollutant degradation[J]. Chemical Engineering Journal,2018(334):2568-2578.
    [12] KARIMI-NAZARABAD M, GOHARSHADI E K, ENTEZARI M H, et al. Rheological properties of the nanofluids of tungsten oxide nanoparticles in ethylene glycol and glycerol[J]. Microfluidics and Nanofluidics,2015,5(19):1191-1202.
    [13] WANG Q, WU H, GAO Q Y, et al. Fabrication of visible-light-active Bi/BiOI-Bi2O3 composite with enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science,2019(548):255-264.
    [14] WANG J, TANG L, ZENG G, et al. Plasmonic Bi metal deposition and g-C3N4 coating on Bi2WO6 microspheres for efficient visible-light photocatalysis[J]. ACS Sustainable Chemistry & Engineering,2016,1(5):1062-1072.
    [15] JIANG L, YUAN X, ZENG G, et al. In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant[J]. Applied Catalysis B: Environmental,2018(227):376-385.
    [16] LIU X, XIONG X, DING S, et al. Bi metal-modified Bi4O5I2 hierarchical microspheres with oxygen vacancies for improved photocatalytic performance and mechanism insights[J]. Catalysis Science & Technology,2017,16(7):3580-3590.
    [17] DI L, YANG H, XIAN T, et al. Photocatalytic and photo-Fenton catalytic degradation activities of Z-scheme Ag2S/BiFeO3 Heterojunction composites under visible-light irradiation[J]. Nanomaterials,2019,3(9):399.
  • 加载中
图(9)
计量
  • 文章访问数:  1122
  • HTML全文浏览量:  557
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 录用日期:  2021-02-23
  • 网络出版日期:  2021-03-12
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回