留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

β-FeOOH/TiO2复合薄膜的制备及其光催化性能

董晓珠 曾雄丰 王建省 赵英娜 张文丽

董晓珠, 曾雄丰, 王建省, 等. β-FeOOH/TiO2复合薄膜的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3): 1173-1179. doi: 10.13801/j.cnki.fhclxb.20210414.002
引用本文: 董晓珠, 曾雄丰, 王建省, 等. β-FeOOH/TiO2复合薄膜的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3): 1173-1179. doi: 10.13801/j.cnki.fhclxb.20210414.002
DONG Xiaozhu, ZENG Xiongfeng, WANG Jiansheng, et al. Preparation of β-FeOOH/TiO2 composite film and its photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1173-1179. doi: 10.13801/j.cnki.fhclxb.20210414.002
Citation: DONG Xiaozhu, ZENG Xiongfeng, WANG Jiansheng, et al. Preparation of β-FeOOH/TiO2 composite film and its photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1173-1179. doi: 10.13801/j.cnki.fhclxb.20210414.002

β-FeOOH/TiO2复合薄膜的制备及其光催化性能

doi: 10.13801/j.cnki.fhclxb.20210414.002
基金项目: 河北省教育厅青年基金(QN2017117);河北省自然科学基金钢铁联合基金(E2019209374)
详细信息
    通讯作者:

    曾雄丰,博士,讲师,研究方向为功能材料 E-mail:zengxf@ncst.edu.cn

  • 中图分类号: TB383.2; O643.36; O644.1

Preparation of β-FeOOH/TiO2 composite film and its photocatalytic performance

  • 摘要: 为提高TiO2在可见光下的光催化性能,通过二次水热反应在FTO导电玻璃上制备获得了高度有序的β-FeOOH/TiO2复合薄膜材料。利用扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼(Raman)及红外光谱(FTIR)对其表面形貌、晶体结构及物相组成进行了分析。采用紫外可见漫反射光谱(UV-Vis DRS)对其光吸收性能进行了测试。最后以甲基橙(MO)为模拟污染物,考察了复合薄膜材料在可见光下的光催化活性。结果表明:TiO2与β-FeOOH之间通过Fe—O—Ti键连接,成功制备出的β-FeOOH/TiO2复合薄膜材料具有较好的结构稳定性。β-FeOOH/TiO2复合薄膜材料由于其构造的异质结和合适的能带结构,有效的提高光生载流子的迁移效率,并使其光响应范围成功扩展到540 nm左右。β-FeOOH/TiO2复合薄膜材料在可见光下展现出了优异的光催化性能,其光催化效率比未改性的TiO2样品提高60.6%,经过六次光催化降解循环试验,复合薄膜仍保持良好的连续性,且光催化降解MO的性能仍保持在94%左右。

     

  • 图  1  β-FeOOH/TiO2复合薄膜的制备流程图

    Figure  1.  Flow chart of preparation of β-FeOOH/TiO2 composite film

    TNR—TiO2 nanorods; TBOT—Tetrabutyl titanate

    图  2  FTO基底、TNR及β-FeOOH/TiO2复合薄膜材料的XRD图谱

    Figure  2.  XRD patterns of FTO, TiO2 and β-FeOOH/TiO2 composite film material

    图  3  β-FeOOH/TiO2复合薄膜的Raman图谱

    Figure  3.  Raman spectra of β-FeOOH/TiO2 composite film material

    图  4  β-FeOOH/TiO2复合薄膜的FTIR图谱

    Figure  4.  FTIR spectra of β-FeOOH/TiO2 composite film material

    图  5  TNR和β-FeOOH/TiO2复合薄膜材料表面((a), (c))和截面((b), (d))的SEM图像

    Figure  5.  Typical SEM images of TNR and β-FeOOH/TiO2 composite film material with surface ((a), (c)) and cross-sectional ((b), (d)) views

    图  6  β-FeOOH/TiO2复合薄膜材料的UV-vis DRS图(a)及带隙外推图(b)

    Figure  6.  UV-vis DRS diagram (a) and band gap extrapolation diagram (b) of β-FeOOH/TiO2 composite film material

    图  7  可见光照射下β-FeOOH/TiO2光催化剂降解甲基橙(MO)曲线

    Figure  7.  Degradation curve of methyl orange (MO) by β-FeOOH/TiO2 photocatalyst under visible light irradiation

    C0—Initial concentration of MO; Ct— Concentration of MO solution at time t

    图  8  β-FeOOH/TiO2复合薄膜材料光催化降解MO的循环实验

    Figure  8.  Photocatalytic degradation rates of MO after repeated cycles by β-FeOOH/TiO2 composite film material

    图  9  TNR和β-FeOOH/TiO2的EIS图谱

    Figure  9.  EIS spectra of TNR and β-FeOOH/TiO2

    图  10  β-FeOOH/TiO2复合薄膜材料异质结能级及界面电荷转移示意图

    Figure  10.  Schematic diagram of heterojunction energy level and interface charge transfer of β-FeOOH/TiO2 composite film materials

    VB—Valence band; CB—Conduction band

  • [1] 邹志刚, 赵进才, 付贤智, 等. 光催化材料在太阳能转换与环境净化方面的研究现状和发展趋势[J]. 功能材料, 2005, 9(6):15-20.

    ZOU Z G, ZHAO J C, FU X Z, et al. Research status and development trend of photocatalytic materials in solar ener-gy conversion and environmental purification[J]. Jour-nal of Functional Materials,2005,9(6):15-20(in Chinese).
    [2] 卫思颖, 马建中, 范倩倩. 量子点/TiO2复合光催化材料的研究进展[J]. 复合材料学报, 2021, 38(3):712-721.

    WEI S Y, MA J Z, FAN Q Q. Research advances on quantum dots/TiO2 composite photocatalytic materials[J]. Acta Materiae Compositae Sinica,2021,38(3):712-721(in Chinese).
    [3] 董晓珠, 曾雄丰, 张文丽, 等. 羟基氧化铁光催化材料的研究进展[J]. 中国陶瓷, 2020, 56(10):8-12.

    DONG X Z, ZENG X F, ZHANG W L, et al. Research progress of iron oxyhydroxide photocatalytic materials[J]. China Ceramics,2020,56(10):8-12(in Chinese).
    [4] LI K, YANG X, ZHANG L, et al. β-FeOOH/Fe-TiO2 heterojunctions on Ti for bacteria inactivation under light irradia-tion and biosealing[J]. Biomaterials Science,2020(5):1571-1576.
    [5] ZHU T, LI O W, ZHU L L, et al. TiO2 fibers supported β-FeOOH nanostructures as efficient visible light photocatalyst and room temperature sensor[J]. Scientific reports,2015,5:10601. doi: 10.1038/srep10601
    [6] SHONEYE Y, TANG J W. Highly dispersed FeOOH to enhance photocatalytic activity of TiO2 for complete mineralisation of herbicides[J]. Applied Surface Science,2020,511:145479. doi: 10.1016/j.apsusc.2020.145479
    [7] FU W, LU D L, YAO H, et al. Simultaneous roxarsone photocatalytic degradation and arsenic adsorption removal by TiO2/FeOOH hybrid[J]. Environmental Science and Pollution Research,2020,27(15):18434-18442.
    [8] LEE D, KVIT A, CHOI K S. Enabling solar water oxidation by BiVO4 photoanodes in basic media[J]. Chemistry of Materials,2018,30(14):4704-4712. doi: 10.1021/acs.chemmater.8b01405
    [9] SHER B R, ASHOK C, WAN I L, et al. Heterojunction of FeOOH and TiO2 for the formation of visible light photocatalyst[J]. Bulletin of the Korean Chemical Society,2009,30(11):2613-2616. doi: 10.5012/bkcs.2009.30.11.2613
    [10] YI H L, LI F L, FENG L Y. Destruction of tetracycline hydrochloride antibiotics by FeOOH/TiO2 granular activated carbon as expanded cathode in low-cost MBR/MFC coupled system[J]. Journal of Membrane Science,2017,525:202-209. doi: 10.1016/j.memsci.2016.10.047
    [11] YIN X, LIU Q, YANG Y, et al. An efficient tandem photoelectrochemical cell composed of FeOOH/TiO2/BiVO4 and Cu2O for self-driven solar water splitting[J]. International Journal of Hydrogen Energy,2019,44(1):594-604.
    [12] 李跃军, 曹铁平, 孙大伟, 等. Bi@Bi4Ti3O12/TiO2等离子体复合纤维的制备及增强可见光催化性能[J]. 复合材料学报, 2020, 37(3):609-617.

    LI Y J, CAO T P, SUN D W, et al. Preparation and highly enhanced visible-light photocatalytic performances of Bi@Bi4Ti3O12/TiO2 plasmonic composite fibers[J]. Acta Materiae Compositae Sinica,2020,37(3):609-617(in Chinese).
    [13] LI Z H, FENG S, LIU S, et al. A three-dimensional interconnected hierarchical FeOOH/TiO2/ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidation[J]. Nanoscale,2015,7(45):19178-19183. doi: 10.1039/C5NR06212H
    [14] YU Q, MENG X G, WANG T et al. Hematite films decorated with nanostructured ferric oxyhydroxide as photoanodes for efficient and stable photoelectrochemical water splitting[J]. Advanced Functional Materials,2015,25(18):2686-2692. doi: 10.1002/adfm.201500383
    [15] 孙振亚. 负载纳米FeOOH/TiO2/Mmt制备与光催化降解甲基橙研究[D]. 武汉: 武汉理工大学, 2009.

    SUN Z Y. Study on FeOOH/TiO2/Mmt nanocomposite’s manufactyre and photocatalytic on Methyl Orange[D]. Wu Han: Wuhan University of Technology, 2009(in Chinese).
    [16] SU X H, HE Q Q, YANG Y E, et al. Free-standing nitrogen-doped TiO2 nanorod arrays with enhanced capacitive capability for supercapacitors[J]. Diamond & Related Materials,2021,114:108168.
    [17] GHOSH N G, SARKAR A, ZADE S S. The type-II n-n inorganic/organic nano-heterojunction of Ti3+ self-doped TiO2 nanorods and conjugated co-polymers for photoelectrochemical water splitting and photocatalytic dye degradation[J]. Chemical Engineering Journal,2021,407:127227. doi: 10.1016/j.cej.2020.127227
    [18] LIN S, REN H, WU Z, et al. Direct Z-scheme WO3-x nanowire-bridged TiO2 nanorod arrays for highly efficient photoelectrochemical overall water splitting[J]. Journal of Energy Chemistry,2021,59:721-729.
    [19] 张子阳, 曾雄丰, 王建省, 等. TiO2纳米阵列/石墨烯复合薄膜材料的研究进展[J]. 中国陶瓷, 2020, 56(7):1-5.

    ZHANG Z Y, ZENG X F, WANG J S, et al. Research progress on TiO2 nanoarray/graphene composite film materials[J]. China Ceramics,2020,56(7):1-5(in Chinese).
    [20] WANG P, WANG J, WANG X, et al. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J]. Applied Cataly-sis B: Environmental,2013,132:452-459.
    [21] ZHANG D B, HAN X Z, KONG X G, et al. The principle of introducing halogen ions into β-FeOOH: Controlling electronic structure and electrochemical performance[J]. Nano-Micro Letters,2020,12(1):107. doi: 10.1007/s40820-020-00440-2
    [22] XU Z H, ZHANG M, WU J Y, et al. Visible light-degradation of azo dye methyl orange using TiO2/β-FeOOH as a heterogeneous photo-Fenton-like catalyst.[J]. Water Science& Technology,2013,68(10):2178-2185.
    [23] ZHANG M, XU Z, LIANG J, et al. Potential application of novel TiO2/β-FeOOH composites for photocatalytic reduction of Cr(VI) with an analysis of statistical approach[J]. International Journal of Environmental Science & Technology,2015(12):1669-1676.
    [24] NTIRIBINYANGE M S. Degradation of textile wastewater using ultra-small β-Feooh/TiO2 heterojunction structure as a visible light photocatalyst[D]. Bellville: Cape Peninsula University of Technology, 2016.
  • 加载中
图(10)
计量
  • 文章访问数:  1581
  • HTML全文浏览量:  669
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 修回日期:  2021-04-04
  • 录用日期:  2021-04-06
  • 网络出版日期:  2021-04-14
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回