留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶合板表面层层自组装聚磷酸铵-纳米氮化硼/壳聚糖薄膜及其阻燃性能

陈博 房轶群 司月月 王奉强 邵博 宋永明 王清文

陈博, 房轶群, 司月月, 等. 胶合板表面层层自组装聚磷酸铵-纳米氮化硼/壳聚糖薄膜及其阻燃性能[J]. 复合材料学报, 2020, 37(0): 1-10
引用本文: 陈博, 房轶群, 司月月, 等. 胶合板表面层层自组装聚磷酸铵-纳米氮化硼/壳聚糖薄膜及其阻燃性能[J]. 复合材料学报, 2020, 37(0): 1-10
Bo CHEN, Yiqun FANG, Yueyue SI, Fengqiang WANG, Bo SHAO, Yongming SONG, Qingwen WANG. Flame retardancy of ammonium polyphosphate-nano boron nitride/chitosan coatings on plywood surface via layer-by-layer self-assembly method[J]. Acta Materiae Compositae Sinica.
Citation: Bo CHEN, Yiqun FANG, Yueyue SI, Fengqiang WANG, Bo SHAO, Yongming SONG, Qingwen WANG. Flame retardancy of ammonium polyphosphate-nano boron nitride/chitosan coatings on plywood surface via layer-by-layer self-assembly method[J]. Acta Materiae Compositae Sinica.

胶合板表面层层自组装聚磷酸铵-纳米氮化硼/壳聚糖薄膜及其阻燃性能

基金项目: “十三五”国家重点研发计划项目(2019YFD1101203);国家自然科学基金 (31870547)
详细信息
    通讯作者:

    房轶群,博士,副教授,硕士生导师,研究方向为生物质复合材料 E-mail: yqfang@nefu.edu.cn

  • 中图分类号: TQ332

Flame retardancy of ammonium polyphosphate-nano boron nitride/chitosan coatings on plywood surface via layer-by-layer self-assembly method

  • 摘要: 本文以杨木胶合板为研究对象,以聚磷酸铵-氮化硼/壳聚糖(APP-CS/BN)为阻燃涂层,通过层层自组装的方法将涂层整理到杨木胶合板上,以赋予胶合板一定的阻燃性能。红外光谱和扫描电镜结果显示,APP-CS/BN涂层在胶合板表面组装形成膜结构,组装膜均匀分布在材料表面。锥型量热仪(CONE)燃烧测试表明,与未经处理的胶合板相比,APP-CS/BN自组装涂层能有效延长胶合板点燃时间(TTI),降低胶合板的热释放速率(HRR)和总热释放量(THR),同时增加材料燃烧后成炭量。随着自组装涂层层数的增加,15层处理材、20层处理材、25层处理材的点燃时间较未处理材分别提升了100%、105%和125%;热释放速率峰值(Pk-HRR)较未处理材分别降低10.15%、22.34%和31.82%;阻燃处理杨木胶合板的THR,较未处理材分别降低2.89%、13.68%和15.32%;未处理材、15层处理材、20层处理材、25层处理材燃烧后成炭率依次为18.55%、24.07%、26.04%和27.65%。随着自组装层数的增加,杨木胶合板的阻燃性能随之增加,但当自组装层数由20层至25层时,胶合板阻燃能力提升的幅度变缓慢。本研究中,阻燃胶合板适宜自组装涂层数为20-25层。
  • 图  1  氮化硼、壳聚糖和表面自组装15层APP-(CS/BN)胶合板的红外谱图

    Figure  1.  Infrared spectrum of boron nitride,chitosan and self-assembled plywoods with 15 APP-CS/BN layers

    图  2  未处理和表面自组装15、20、25层APP-(CS/BN)胶合板扫描电镜及能谱图: (a) control;(b) APP-(CS/BN)-15;(c) APP-(CS/BN)-20;(d) APP-(CS/BN)-25

    Figure  2.  SEM images and energy spectrum of untreated and self-assembled plywoods with 15, 20, 25 APP-CS/BN layers: (a) control; (b) APP-(CS/BN)-15;(c) APP-(CS/BN)-20;(d) APP-(CS/BN)-25

    图  3  未处理和表面自组装15、20、25层APP-(CS/BN)胶合板的热释放速率曲线

    Figure  3.  Heat release rate curves of the untreated and self-assembled plywoods with 15, 20, 25 APP-CS/BN layers

    图  4  未处理和表面自组装15、20、25层APP-(CS/BN)胶合板的总释放热量曲线

    Figure  4.  Total heat release curves of the untreated and self-assembled plywoods with 15, 20, 25 APP-CS/BN layers

    图  5  未处理和表面自组装15、20、25层APP-(CS/BN)胶合板的总释放烟量曲线

    Figure  5.  Total smoke release curves of the untreated and self-assembled plywoods with 15, 20, 25 APP-CS/BN layers

    图  6  未处理和表面自组装15、20、25层APP-(CS/BN)胶合板烟气中CO2释放速率曲线

    Figure  6.  CO2 release rate curves of the untreated and self-assembled plywoods with 15, 20, 25 APP-CS/BN layers

    图  7  未处理和表面自组装15、20、25层APP-(CS/BN)胶合板烟气中CO释放速率曲线

    Figure  7.  CO release rate curves of the untreated and self-assembled plywoods with 15, 20, 25 APP-CS/BN layers

    图  8  未处理和表面自组装15、20、25层APP-(CS/BN)胶合板的残余物质量曲线

    Figure  8.  Residue mass curves of the untreated and self-assembled plywoods with 15, 20, 25 APP-CS/BN layers

    9  未处理和表面自组装15、20、25层APP-(CS/BN)胶合板燃烧后残炭形貌数码照片: (a) control;(b) APP-(CS/BN)-15;(c) APP-(CS/BN)-20;(d) APP-(CS/BN)-25

    9.  Digital photos of residual carbon morphology of untreated and self-assembled plywoods with 15, 20, 25 APP-CS/BN layers : (a) control; (b) APP-(CS/BN)-15;(c) APP-(CS/BN)-20;(d) APP-(CS/BN)-25

    10  未处理和表面自组装15,20,25层APP-(CS/BN)胶合板燃烧后残炭扫描电镜图: (a) control;(b) APP-(CS/BN)-15;(c) APP-(CS/BN)-20;(d) APP-(CS/BN)-25

    10.  SEM images of carbon residue of untreated and self-assembled plywoods with 15, 20, 25 APP-CS/BN layers : (a) control; (b) APP-(CS/BN)-15;(c) APP-(CS/BN)-20;(d) APP-(CS/BN)-25

    表  1  APP-CS/BN自组装胶合板的层数和增重

    Table  1.   Self-assembled layers and weight gain of plywoods with APP-CS/BN

    Samples Layer numbers Weight gain (wt%)
    Control 0 0
    APP-(CS/BN)-15 15 10.28
    APP-(CS/BN)-20 20 13.83
    APP-(CS/BN)-25 25 17.64
    下载: 导出CSV
  • [1] 胡景娟, 程瑞香, 王清文, 等. 杨木胶合板阻燃处理工艺及燃烧性能[J]. 木材加工机械, 2008, 2:14-18. doi:  10.3969/j.issn.1001-036X.2008.02.005

    HU Jingjuan, CHENG Ruixiang, WANG Qingwen, et al. Fire retardant impregnating process and combustion properties of poplar plywood[J]. Wood Processing Machinery,2008,2:14-18(in Chinese). doi:  10.3969/j.issn.1001-036X.2008.02.005
    [2] ZHAO G L, YU Z L. Recent research and development advances of wood science and technology in China: impacts of funding support from National Natural Science Foundation of China[J]. Wood Science & Technology,2016,50(1):193-215.
    [3] GU J W, ZHANG G C, DONG S L, et al. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings[J]. Surface and Coatings Technology,2007,201(18):7835-7841. doi:  10.1016/j.surfcoat.2007.03.020
    [4] LIU Y Z, FU Y C, YU H P, et al. Process of in situ forming well-aligned zinc oxide nanorod arrays on wood substrate using a two-step bottom-up method[J]. Journal of Colloid and Interface Science,2013,407(10):116-121.
    [5] 刘迎涛, 李坚, 王清文. FRW阻燃桦木胶合板的性能研究[J]. 林产工业, 2004, 31(3):22-24. doi:  10.3969/j.issn.1001-5299.2004.03.006

    LIU Yingtao, LI Jian, WANG Qingwen. Study on the properties of FRW fire-retardant plywood of betula[J]. China Forest Products Industry,2004,31(3):22-24(in Chinese). doi:  10.3969/j.issn.1001-5299.2004.03.006
    [6] 曾思华, 韦春, 刘红霞, 等. 剑麻纤维素微晶(壳聚糖/聚对苯乙烯磺酸钠)层层自组装及其复合材料的热性能和阻燃性能[J]. 高分子材料科学与工程, 2014, 30(007):76-79.

    ZENG Sihua, WEI Chun, LIU Hongxia, et al. Construction of sisal fiber cellulose microcrystal/chitosan/polystyrene sulfonatevia layer-by-layer assembly and flame retardant properties of the composites[J]. Polymer Materials Science and Engineering,2014,30(007):76-79(in Chinese).
    [7] TANG L, LI X, DU D, et al. Fabrication of multilayer films from regenerated cellulose and graphene oxide through layer-by-layer assembly[J]. Progress in Natural Science Materials International,2012,22(4):341-346. doi:  10.1016/j.pnsc.2012.06.005
    [8] GERO D. Fuzzy nanoassemblies: Toward layered polymeric multicomposites[J]. Science,1997,277(5330):1232-1237. doi:  10.1126/science.277.5330.1232
    [9] 黄孝华, 牛红超, 刘婵娟, 等. (壳聚糖-聚磷酸铵)/剑麻纤维素微晶层层自组装复合材料的热性能和阻燃性能[J]. 复合材料学报, 2020, 37(2):260-266.

    HUANG Xiaohua, NIU Hongchao, LIU Chanjuan, et al. Thermal and flame retardant properties of(chitosan-ammonium polyphosphate)/sisal fiber cellulose microcyrstal layer-by-layer self assembly composite[J]. Acta Materiae Composite Sinica,2020,37(2):260-266(in Chinese).
    [10] RENNECKAR S, ZHOU Y. Nanoscale coatings on wood: Polyelectrolyte adsorption and layer-by-layer assembled film formation[J]. Acs Appl Mater Interfaces,2009,1(3):559-566. doi:  10.1021/am800119q
    [11] 张国正, 于海鹏, 刘一星. 木材表面组装PEI/纳米ZrO<sub>2</sub>/FAS复合薄膜及其性能[J]. 林业工程学报, 2017, 2(3):83-89.

    ZHANG Guozheng, YU Haipeng, LIU Yixing. Performances of PEI/nano-ZrO<sub>2</sub>/FAS composite coatings on wood surface via llayer-by-layer assemble method[J]. Journal of Forestry Engineering,2017,2(3):83-89(in Chinese).
    [12] LIN Z Y, RENNECKAR S. Nanocomposite-based lignocellulosic fibers 2: Layer-by-layer modification of wood fibers for reinforcement in thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing,2011,42(1):84-91. doi:  10.1016/j.compositesa.2010.10.011
    [13] KANNAN K P, GEORGE T S, GURUK S S. Extraction, purification and characterization of chitosan from endophytic fungi isolated from medicinal plants[J]. World Journal of Science and Technology,2011,1(4):43-48.
    [14] 郜玉楠, 周历涛, 王静, 等. 壳聚糖/沸石分子筛复合吸附颗粒的制备与性能[J]. 复合材料学报, 2019, 36(3):701-707.

    GAO Yunan, ZHOU Litao, WANG Jing, et al. Preparation and performance of chitosan/zeolite molecular sieve composite adsorbed particles[J]. Acta Materiae Composite Sinica,2019,36(3):701-707(in Chinese).
    [15] WU G J, LI J M, CUI Y D, et al. Studies on the hardness of chitosan-polyvinyl alcohol hydrogel[J]. Materials Review,2006,20(5):139-141.
    [16] WENG Q H, WANG B J, WANG X B, et al. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery[J]. ACS Nano,2014,8(6):6123-6130. doi:  10.1021/nn5014808
    [17] 李斌, 王建祺. 聚合物材料燃烧性和阻燃性的评价-锥型量热仪(CONE)法[J]. 高分子材料科学与工程, 1998(5):15-19. doi:  10.3321/j.issn:1000-7555.1998.05.004

    LI Bin, WANG Jianqi. Utilization of cone calorimeter for the appraisal of the flammability and flame retardancy of polymer materials[J]. Polymer Materials Science and Engineering,1998(5):15-19(in Chinese). doi:  10.3321/j.issn:1000-7555.1998.05.004
    [18] MA X X, WU Y Z, ZHU H L. The fire-retardant properties of the melamine-modified urea-formaldehyde resins mixed with ammonium polyphosphate[J]. Journal of Wood Science,2013,59(5):419-425. doi:  10.1007/s10086-013-1350-6
    [19] 张军, 纪奎江, 夏延致. 聚合物燃烧与阻燃技术[M]. 北京: 化学工业出版社, 2005.

    ZHANG Jun, JI Kuijiang, XIA Yanzhi. Polymer combustion and flame retardant technology[M]. Beijing: Chemical Industry Press, 2005 (in Chinese).
    [20] 李坚, 王清文, 李淑君, 等. 用CONE法研究木材阻燃剂FRW的阻燃性能[J]. 林业科学, 2002, 38(5):108-114. doi:  10.3321/j.issn:1001-7488.2002.05.018

    LI Jian, WANG Qingwen, LI Shujun, et al. A Study on the flame retardancy of FRW fire retardant for wood by CONE calorimeter[J]. Scientia Silvae Sinicae,2002,38(5):108-114(in Chinese). doi:  10.3321/j.issn:1001-7488.2002.05.018
    [21] 房轶群, 王清文, 宋永明, 等. 聚磷酸铵-淀粉对木粉/聚苯乙烯复合材料的阻燃作用[J]. 高分子材料科学与工程, 2008, 24(11):83-86. doi:  10.3321/j.issn:1000-7555.2008.11.022

    FANG Yiqun, WANG Qingwen, SONG Yongming, et al. The fire retardancy of wood flour/ PS composites treated with APP-Starch[J]. Polymer Materials Science and Engineering,2008,24(11):83-86(in Chinese). doi:  10.3321/j.issn:1000-7555.2008.11.022
    [22] 夏燎原, 胡云楚, 吴义强, 等. 介孔SiO<sub>2</sub>-APP复合阻燃剂的制备及其对木材的阻燃抑烟作用[J]. 中南林业科技大学学报, 2012, 32(1):9-13. doi:  10.3969/j.issn.1673-923X.2012.01.002

    XIA Liaoyuan, HU Yunchu, WU Yiqiang, et al. Preparation of mesoporous SiO<sub>2</sub>-APP composite flame retardant and effects of flame retardant and smoke suppression on wood[J]. Journal of the Central South University of Forestry and Technology,2012,32(1):9-13(in Chinese). doi:  10.3969/j.issn.1673-923X.2012.01.002
    [23] YUAN L P, FENG S Y, HU Y C, et al. Effect of char sulfonic acid and ammonium polyphosphate on flame retardancy and thermal properties of epoxy resin and polyamide composites[J]. Journal of Fire Sciences,2017,35(6):521-534. doi:  10.1177/0734904117720121
    [24] TIAN N N, WEN X, JIANG Z W, et al. Synergistic effect between a novel char forming agent and ammonium polyphosphate on flame retardancy and thermal properties of polypropylene[J]. Industrial and Engineering Chemistry Research,2013,52(32):10905-10915. doi:  10.1021/ie401058u
  • [1] 路鹏程, 陈栋, 王志平.  碳纤维/聚苯硫醚热塑性复合材料电阻焊接工艺, 复合材料学报. 2020, 37(5): 1041-1048. doi: 10.13801/j.cnki.fhclxb.20190807.002
    [2] 汤龙其, 令旭霞, 王士华, 郭帅, 龙柱.  聚吡咯/碳纤维纸电热复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1426-1433. doi: 10.13801/j.cnki.fhclxb.20191021.002
    [3] 于翔, 董献辉, 桂久青, 张雪寅, 宋子豪, 李玥.  Ag对TiO2@Ag/聚偏氟乙烯复合薄膜性能的影响, 复合材料学报. 2020, 37(7): 1555-1561. doi: 10.13801/j.cnki.fhclxb.20191128.001
    [4] 杨凤祥, 陈静芬, 陈善富, 刘志明.  基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测, 复合材料学报. 2020, 37(9): 2207-2222. doi: 10.13801/j.cnki.fhclxb.20200110.002
    [5] 王遥, 曹东风, 胡海晓, 冀运东, 宋培豪, 李书欣.  单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究, 复合材料学报. 2020, 37(): 1-11.
    [6] 段瑛涛, 武肖鹏, 王智文, 敬敏, 栗娜, 刘强, 宁慧铭, 胡宁.  碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能, 复合材料学报. 2020, 37(10): 1-10. doi: 10.13801/j.cnki.fhclxb.20200215.002
    [7] 胡春幸, 侯玉亮, 铁瑛, 李成, 田可可.  基于遗传算法的CFRP层合板单搭胶接结构的多目标优化, 复合材料学报. 2020, 37(): 1-12.
    [8] 卫宇璇, 张明, 刘佳, 刘硕, 崔志刚.  基于自动铺放技术的高精度变刚度复合材料层合板屈曲性能, 复合材料学报. 2020, 37(): 1-9.
    [9] 王计真, 刘小川.  考虑面内载荷的复合材料层合板冲击性能, 复合材料学报. 2020, 37(8): 1868-1874. doi: 10.13801/j.cnki.fhclxb.20191125.001
    [10] 于晓东, 胡海晓, 贾欲明, 王敏, 曹东风.  褶皱缺陷影响L型层合板失效行为:实验和数值研究, 复合材料学报. 2020, 37(8): 1932-1943. doi: 10.13801/j.cnki.fhclxb.20191022.001
    [11] 李哲, 黄尧, 吴刚强, 杜宇, 范晓静, 吴大鸣.  基于空间限域强制组装法制备短切碳纤维/乙烯-醋酸乙烯导电复合材料性能, 复合材料学报. 2020, 37(6): 1234-1242. doi: 10.13801/j.cnki.fhclxb.20190924.002
    [12] 李庆辉, 孔维纳, 李喆, 王少敏, 王绍凯, 顾轶卓, 李敏.  基于高Q腔法测试氮化硅纤维的介电性能, 复合材料学报. 2020, 37(9): 2240-2249. doi: 10.13801/j.cnki.fhclxb.20200115.003
    [13] 李亮, 蔡再生.  磷氮复合阻燃环氧树脂的制备及其阻燃性能, 复合材料学报. 2020, 37(11): 1-11.
    [14] 宋月英, 韩丁, 关晓琳, 雷西萍.  自组装法制备磺化聚苯乙烯@Fe3O4磁性复合颗粒及其磁性能, 复合材料学报. 2020, 37(6): 1364-1369. doi: 10.13801/j.cnki.fhclxb.20191014.003
    [15] 刘丽, 韩思杰, 张松, 靳惠宇, 周凌.  二乙基次磷酸铝和埃洛石纳米管协效阻燃尼龙66的制备及性能, 复合材料学报. 2020, 37(10): 1-8. doi: 10.13801/j.cnki.fhclxb.20190902.003
    [16] 孙颖颖, 周璐瑶, 韩宇, 崔柳.  气泡和气隙影响六方氮化硼/环氧树脂复合材料导热性能的有限元模拟, 复合材料学报. 2020, 37(10): 1-7. doi: 10.13801/j.cnki.fhclxb.20200111.004
    [17] 丁春香, 潘明珠, 杨舒心, 梅长彤.  基于数字图像相关技术的木纤维/高密度聚乙烯复合材料界面力学行为, 复合材料学报. 2020, 37(9): 2173-2182. doi: 10.13801/j.cnki.fhclxb.20200122.001
    [18] 汤连东, 吴袁泊, 袁利萍, 胡云楚, 刘月姣, 范友华.  磷钨酸插层ZnAl层状双金属氢氧化物协同膨胀阻燃剂对环氧-聚酰胺树脂的阻燃作用, 复合材料学报. 2020, 37(9): 2125-2136. doi: 10.13801/j.cnki.fhclxb.20200512.001
    [19] 高顺, 郭正虹.  纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制, 复合材料学报. 2020, 37(11): 1-11.
    [20] 段聪, 房轶群, 王奉强, 于云鹏, 权大通, 张显权, 王清文.  纳米氮化硼与氧化锌协效阻燃WF-PVC复合材料, 复合材料学报. 2020, 37(): 1-8.
  • 加载中
计量
  • 文章访问数:  59
  • HTML全文浏览量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-25

目录

    /

    返回文章
    返回