留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型复合材料“高强钢绞线网/ECC约束素混凝土”受压性能试验研究

王新玲 卫垚鑫 范建伟 朱俊涛

王新玲, 卫垚鑫, 范建伟, 等. 新型复合材料“高强钢绞线网/ECC约束素混凝土”受压性能试验研究[J]. 复合材料学报, 2021, 38(11): 3904-3911. doi: 10.13801/j.cnki.fhclxb.20201225.002
引用本文: 王新玲, 卫垚鑫, 范建伟, 等. 新型复合材料“高强钢绞线网/ECC约束素混凝土”受压性能试验研究[J]. 复合材料学报, 2021, 38(11): 3904-3911. doi: 10.13801/j.cnki.fhclxb.20201225.002
WANG Xinling, WEI Yaoxin, FAN Jianwei, et al. Experimental study on compressive performance of new composite material “concrete confined with high-strength steel stranded wire meshes/ECC”[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3904-3911. doi: 10.13801/j.cnki.fhclxb.20201225.002
Citation: WANG Xinling, WEI Yaoxin, FAN Jianwei, et al. Experimental study on compressive performance of new composite material “concrete confined with high-strength steel stranded wire meshes/ECC”[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3904-3911. doi: 10.13801/j.cnki.fhclxb.20201225.002

新型复合材料“高强钢绞线网/ECC约束素混凝土”受压性能试验研究

doi: 10.13801/j.cnki.fhclxb.20201225.002
基金项目: 国家自然科学基金(51879243);国家重点研发计划项目(2017YFC1501204);国家自然科学基金-联合基金(U1804137)
详细信息
    通讯作者:

    范建伟,硕士,讲师,研究方向为土木工程新材料 E-mail:3586970@qq.com

  • 中图分类号: TU528.57

Experimental study on compressive performance of new composite material “concrete confined with high-strength steel stranded wire meshes/ECC”

  • 摘要: 考虑混凝土强度、工程水泥基复合材料(ECC)强度和横向高强钢绞线配筋率等因素,研究新型复合材料“高强钢绞线网/ECC约束素混凝土”(以下简称HSE约束素混凝土)的受压性能。HSE约束素混凝土轴心受压试验显示,达到最大荷载的30%左右时,约束层ECC出现约为0.01 mm的竖向裂缝;约为最大荷载的85%时,表面最大裂缝宽度约为0.07 mm;达到最大荷载时,最大裂缝宽度仅为0.20 mm;说明该新型复合材料具有很好的裂缝分散和控制能力。之后荷载缓慢下降至最大荷载75%左右,第一根横向钢绞线断裂;达到破坏时裂而不碎,约束层和核心混凝土未发生黏结破坏,完整性良好。HSE约束素混凝土与素混凝土相比,其开裂应力提高了88%~116%;轴心抗压强度提高了21%~49%、轴心压应变增加了约45%;极限压应变提高了106%~175%。ECC强度和混凝土强度及横向钢绞线配筋率的提高,均增大其开裂和最大荷载及极限压应变。

     

  • 图  1  HSE约束素混凝土试件

    Figure  1.  HSE confined concrete specimens

    图  2  HSE约束素混凝土试件加载装置

    Figure  2.  Loading of HSE confined concrete specimens specimens

    图  3  ECC试验典型受拉应力-应变曲线

    Figure  3.  Typical tensile stress-strain curve of ECC

    图  4  D组素混凝土试件裂缝及破坏形态

    Figure  4.  Cracks and failure patterns of plain concrete specimens of group D

    图  5  HSE约束素混凝土试件裂缝及破坏形态

    Figure  5.  Cracks and failure patterns of HSE confined concrete column specimens

    图  6  HSE约束素混凝土试件等效压应力-压应变曲线

    Figure  6.  Compressive stress-strain curves of HSE confined concrete specimens under compression

    图  7  HSE约束素混凝土应力-ECC强度的关系

    Figure  7.  Stress of HSE confined concrete versus tensile strength of ECC

    图  8  HSE约束素混凝土应力-混凝土强度等级的关系

    Figure  8.  Stress of HSE confined concrete versus strength grade of concrete

    图  9  HSE约束素混凝土应力-横向钢绞线配筋率(ρw)的关系

    Figure  9.  Stress of HSE confined concrete versus reinforcement ratio of lateral steel stranded wires (ρw)

    图  10  HSE约束素混凝土极限压应变-横向钢绞线配筋率的关系

    Figure  10.  Ultimate compressive strain of HSE confined concrete versus the reinforcement ratio of lateral steel stranded wires

    表  1  高强钢绞线网/工程水泥基复合材料(ECC)约束素混凝土(HSE约束素混凝土)试件参数设置

    Table  1.   Parameters of test concrete confined with high-strength stainless steel stranded wire meshes/ engineered cementitious composites (ECC) (HSE confined concrete) specimens

    GroupNumberWater-binder ratio of ECCs/mmρw/%
    AC30-E1-S500.25500.18
    C30-E2-S500.25 (Thickener)500.18
    C30-E3-S500.28500.18
    BC30-E1-S700.25700.13
    C30-E1-S500.25500.18
    C30-E1-S300.25300.30
    CC35-E1-S500.25500.18
    C40-E1-S500.25500.18
    DC30-E0-S0
    C35-E0-S0
    C40-E0-S0
    Notes: s—Spacing of lateral steel stranded wires; ρw—Reinforcement ratio of lateral steel stranded wires.
    下载: 导出CSV

    表  2  混凝土立方体抗压试验结果

    Table  2.   Test results of concrete cubes under compression

    Strength grade of concretefcu/MPafco/MPaEc/104MPa
    C3033.522.43.0
    C3538.225.53.15
    C4042.928.63.25
    Notes: fcu—Average values of cube compressive strength; fco—Axial compressive strength; Ec—Elastic modulus.
    下载: 导出CSV

    表  3  ECC抗压和抗拉试验结果

    Table  3.   Test results of ECC under compression or tensile

    Groupfm,cu/MPaEe/104MPafm,t/MPaUltimate tensile strain/%
    C30-E1-S5038.81.714.522.58
    C30-E2-S5035.51.454.013.05
    C30-E3-S5033.51.273.343.01
    C30-E1-S7037.51.404.592.47
    C30-E1-S5037.11.384.632.47
    C30-E1-S3037.61.414.652.47
    C35-E1-S5038.11.534.722.59
    C40-E1-S5038.91.524.702.69
    Notes: fm,cu—Compressive strength of ECC; Ee—Elastic modulus; fm,t—Tensile strength.
    下载: 导出CSV

    表  4  HSE约束素混凝土主要试验结果

    Table  4.   Main test results of HSE confined concrete

    Group numberfm,t/MPaPcr/kNPu/kNPcr/Puεec0Ps/kNPs/P0εecufec0/MPa
    C30-E1-S504.5250015860.320.003411570.730.007630.47
    C30-E2-S504.0448015420.310.003211560.750.007431.15
    C30-E3-S503.3447014980.320.003311680.780.007328.21
    C30-E1-S704.5950015100.330.003211440.760.006829.91
    C30-E1-S504.6351015910.320.003411780.740.007831.61
    C30-E1-S304.6553016600.320.003212600.750.009134.66
    C35-E1-S504.7254017520.310.003313400.760.007634.42
    C40-E1-S504.7058019260.330.003214660.760.007838.14
    C30-E0-S02509300.270.002223.25
    C35-E0-S027510560.260.002326.40
    C40-E0-S030011470.260.002228.68
    Notes: Pcr—Cracking load of specimens; Pu—Peak load; εec0—Compressive strain corresponding to peak load (axial compressive strain); Ps—Load at the first rupture of the lateral steel stranded wires; εecu—Strain at the first rupture of the lateral steel stranded wires (ultimate compressive strain); fec0—Peak load (axial compressive strength).
    下载: 导出CSV
  • [1] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):45-60. doi: 10.3321/j.issn:1000-131X.2008.06.008

    XU Shilang, LI Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal,2008,41(6):45-60(in Chinese). doi: 10.3321/j.issn:1000-131X.2008.06.008
    [2] 刘伟康. ECC受压和受拉性能及本构模型研究[D]. 郑州: 郑州大学, 2018.

    LIU Weikang. Study on the compression and tensile properties and the constitutive model of ECC[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
    [3] SAID S H, RAZAK H A, OTHMAN I. Flexural behavior of engineered cementitious composite (ECC) slabs with polyvinyl alcohol fibers[J]. Construction and Building Materials,2015,75:176-188. doi: 10.1016/j.conbuildmat.2014.10.036
    [4] Li V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics,1992,118(11):2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [5] 李悦, 朱金才, 吴玉生. 纤维对水泥基材料力学性能的影响[J]. 华中科技大学学报(自然科学版), 2017, 45(11):57-61.

    LI Rui, ZHU Jincai, WU Yusheng. Effect of fiber on mechanical property of cementitious composite[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2017,45(11):57-61(in Chinese).
    [6] 张富文, 李向民, 王卓琳, 等. 纤维增强水泥基复合材料加固震损RC框架抗震性能试验研究[J]. 建筑结构学报, 2017, 38(6):61-69.

    ZHANG Fuwen, LI Xiangming, WANG Zhuolin, et al. Experimental study on seismic behavior of earthquake-damaged RC frame strengthened by ECC[J]. Journal of Building Structures,2017,38(6):61-69(in Chinese).
    [7] LI B B, XIONG H B, JIANG J F, et al. Tensile behavior of basalt textile grid reinforced engineering cementitious composite[J]. Composites Part B: Engineering,2018,156(1):185-200.
    [8] ZHENG Y, ZHANG L F, XIA L P. Investigation of the behaviour of flexible and ductile ECC link slab reinforced with FRP[J]. Construction and Building Materials,2018,166(3):694-711.
    [9] AL-GEMEEL A N, ZHUGR Y, YOUSSF O. Experimental investigation of basalt textile reinforced engineered cementitious composite under apparent hoop tensile loading[J]. Journal of Building Engineering,2019,23(5):270-279.
    [10] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967.

    JIANG Jiafei, SUI Kai. Experimental study on compressive performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Composite Sinica,2019,36(8):1957-1967(in Chinese).
    [11] 卜良桃, 李易越, 袁超, 等. PVA-ECC加固RC方柱轴压性能试验研究[J]. 建筑结构, 2012, 42(7):97-102.

    BU Liangtao, LI Yiyue, YUAN Chao, et al. Experimental study on bearing capacity of PVA-ECC reinforced concrete square columns subjected to axial load[J]. Building Structure,2012,42(7):97-102(in Chinese).
    [12] 卜良桃, 袁超, 鲁晨, 等. 聚乙烯醇纤维水泥砂浆钢筋网加固RC柱偏压性能试验研究[J]. 建筑结构, 2013, 43(8):82-88.

    BU Liangtao, YUAN Chao, LU Chen, et al. Study on bearing capacity of PVA-ECC steel mesh reinforced concrete column subjected to eccentric load[J]. Building Structure,2013,43(8):82-88(in Chinese).
    [13] 王新玲, 苏会晓, 李可, 等. FRP网格增强ECC加固素混凝土柱受压性能数值分析[J]. 建筑科学, 2018, 34(3):22-29.

    WANG Xinling, SU Huixiao, LI Ke, et al. Numerical analysis of compressive performance of plain concrete columns strengthened with FRP-Grid and ECC[J]. Building Science,2018,34(3):22-29(in Chinese).
    [14] AL-GEMEEL A N, ZHUGR Y. Experimental investigation of textile reinforced engineered cementitious composite (ECC) for square concrete column confinement[J]. Construction and Building Materials,2018,174(6):594-602.
    [15] AL-GEMEEL A N, ZHUGR Y. Using textile reinforced engineered cementitious composite for concrete columns confinement[J]. Composite Structures,2019,210(2):695-706.
    [16] 朱俊涛, 张凯, 王新玲, 等. 高强不锈钢绞线网与ECC黏结-滑移关系模型[J]. 土木工程学报, 2020, 53(4):83-92.

    ZHU Juntao, ZHANG Kai, WANG Xinling, et al. Bond-slip relational model between high-strength stainless steel wire mesh and ECC[J]. China Civil Engineering Journal,2020,53(4):83-92(in Chinese).
    [17] 王新玲, 杨广华, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系[J]. 复合材料学报, 2020, 37(12):3321-3329.

    WANG Xinling, YANG Guanghua, QIAN Wenwen, et al. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh[J]. Acta Materiae Compositae Sinica,2020,37(12):3321-3329(in Chinese).
    [18] 王新玲, 罗鹏程, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料薄板受弯承载力研究[J/OL]. 建筑结构学报: 2020. 0155.

    WANG Xinling, LUO Pengcheng, QIAN Wenwen, et al. Study on flexural bearing capacity of high strength stainless steel wire strand mesh reinforced ECC thin plate[J/OL]. Journal of Building Structures: 1-9[2020-10-07](in Chinese). 2020. 0155.
    [19] 中华人民共和国住房和城乡建筑部. 混凝土结构加固设计规范: GB 50367—2013[S]. 北京: 中国建筑工业出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of strengthening concrete structures: GB 50367—2013[S]. Beijing: China Architecture & Building Press, 2013(in Chinese).
    [20] 中华人民共和国住房和城乡建筑部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
    [21] XU S L, CAI X R. Experimental study and theoretical models on compressive properties of ultra high toughness cementitious composites[J]. Journal of Materials in Civil Engineering,2010,22(10):1067-1077. doi: 10.1061/(ASCE)MT.1943-5533.0000109
    [22] 白亮, 周枫, 谢鹏飞, 等. 高延性纤维增强水泥基复合材料力学性能试验研究[J]. 工业建筑, 2017, 47(6):108-113.

    BAI Liang, ZHOU Fen, XIE Pengfei, et al. Experimental research on mechanical properties of engineered cementitious composites[J]. Industrial Construction,2017,47(6):108-113(in Chinese).
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1086
  • HTML全文浏览量:  392
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 录用日期:  2020-12-17
  • 网络出版日期:  2020-12-26
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回