留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同氧化程度氧化石墨烯/聚乙烯醇气凝胶对亚甲基蓝的吸附

张宏伟 谢鸿 肖欣荣 方志强

张宏伟, 谢鸿, 肖欣荣, 等. 不同氧化程度氧化石墨烯/聚乙烯醇气凝胶对亚甲基蓝的吸附[J]. 复合材料学报, 2021, 38(9): 2795-2802. doi: 10.13801/j.cnki.fhclxb.20201203.002
引用本文: 张宏伟, 谢鸿, 肖欣荣, 等. 不同氧化程度氧化石墨烯/聚乙烯醇气凝胶对亚甲基蓝的吸附[J]. 复合材料学报, 2021, 38(9): 2795-2802. doi: 10.13801/j.cnki.fhclxb.20201203.002
ZHANG Hongwei, XIE Hong, XIAO Xinrong, et al. Adsorption of methylene blue by graphene oxide/polyvinyl alcoholaerogels with different oxidation degrees[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2795-2802. doi: 10.13801/j.cnki.fhclxb.20201203.002
Citation: ZHANG Hongwei, XIE Hong, XIAO Xinrong, et al. Adsorption of methylene blue by graphene oxide/polyvinyl alcoholaerogels with different oxidation degrees[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2795-2802. doi: 10.13801/j.cnki.fhclxb.20201203.002

不同氧化程度氧化石墨烯/聚乙烯醇气凝胶对亚甲基蓝的吸附

doi: 10.13801/j.cnki.fhclxb.20201203.002
基金项目: 国家自然科学青年科学基金 (31700508);广州市珠江科技新星专项(201806010141)
详细信息
    通讯作者:

    张宏伟,博士,副教授,硕士生导师,研究方向为特种纸与功能纸、造纸湿部化学及造纸化学品 E-mail:hwzhang@scut.edu.cn

  • 中图分类号: TB332

Adsorption of methylene blue by graphene oxide/polyvinyl alcoholaerogels with different oxidation degrees

  • 摘要: 氧化石墨烯(GO)对水中染料有着优异的吸附性能,但其氧化程度对复合材料吸附性能和机制的影响还未被充分研究。采用Hummer法,制备3种不同氧化程度的氧化石墨烯,与聚乙烯醇(PVA)复合得到三种GO/PVA气凝胶。利用红外光谱(FTIR)、元素分析(EA)和热重分析(TG)分析了3种GO的氧化程度;以亚甲基蓝(MB)为模拟污染物,通过静态吸附实验考察了GO氧化程度对GO/PVA气凝胶在不同溶液pH、吸附时间、初始浓度下对MB吸附性能的影响。通过吸附动力学模型、吸附等温线模型和吸附热力学模型探究了GO氧化程度对GO/PVA气凝胶吸附机制的影响。研究结果表明:GO/PVA气凝胶对MB的吸附行为受pH影响较小;提高GO的氧化程度可以明显提升GO/PVA气凝胶的吸附容量和吸附速度,GO氧化程度的提高增加了气凝胶上的吸附位点,有利于吸附。此外,GO氧化程度对GO/PVA气凝胶的吸附机制无明显影响。

     

  • 图  1  氧化石墨烯(GO)FTIR图谱

    Figure  1.  FTIR spectra of graphene oxide (GO)

    图  2  石墨及GO热重曲线

    Figure  2.  TG curves of graphite and GO

    图  3  溶液pH对GO/聚乙烯醇(PVA)气凝胶吸附亚甲基蓝(MB)的影响

    Figure  3.  Effect of solution pH on the adsorption performance of GO/polyvinyl alcohol (PVA) aerogels to methylene blue (MB)

    图  4  吸附时间对GO/PVA气凝胶吸附MB的影响

    Figure  4.  Effect of adsorption time on the adsorption performance of GO/PVA aerogels

    图  5  初始浓度对GO/PVA气凝胶吸附MB的影响

    Figure  5.  Effect of initial concentration on the adsorption performance of GO/PVA aerogels

    图  6  GO/PVA气凝胶吸附MB的准一级 (a) 和准二级 (b) 动力模型拟合曲线

    Figure  6.  Fitting curves of pseudo-first-order (a) and pseudo-second-order (b) models for MB adsorption by GO/PVA aerogels

    表  1  不同氧化程度GO的元素分析结果

    Table  1.   Elemental analysis of GO with different oxidation degrees

    LabelC/wt%H/wt%O/wt%
    GO-1 65.11 5.68 29.21
    GO-2 59.24 6.67 34.09
    GO-3 58.31 7.21 34.48
    下载: 导出CSV

    表  2  GO/PVA气凝胶吸附MB的准一级和准二级动力模型参数

    Table  2.   Pseudo-first-order and pseudo-second-order model parameters for MB adsorption by GO/PVA aerogels

    AerogelPseudo-first-orderPseudo-second-order
    qe(cal)/(mg·g−1)K1/min−1R2qe(cal)/(mg·g−1)K2/(g(mg·min)-1)R2
    GO/PVA-1 57.26 0.0044 0.9099 77.52 0.00043 0.9992
    GO/PVA-2 64.48 0.0057 0.9840 90.91 0.00024 0.9999
    GO/PVA-3 38.65 0.0078 0.9589 91.74 0.00065 0.9949
    Notes: K1,K2—Pseudo-first-order kinetic constant and pseudo-second-order kinetic constant; qe(cal)—Calculation amount of MB removed per unit mass of adsorbent.
    下载: 导出CSV

    表  3  不同温度下GO/PVA气凝胶吸附MB的Langmuir和Freundlich等温吸附模型参数

    Table  3.   Langmuir and Freundlich isotherm adsorption model parameters for MB adsorption by GO/PVA aerogels at different temperatures

    AerogelT/KLangmuir isothermFreundlich isotherm
    qmax/(mg·g−1)KL/(L·mg−1)R2Kf/(L·mg−1)nR2
    GO/PVA-1 293.15 80.97 0.21 0.9934 20.36 3.17 0.8682
    303.15 76.51 0.24 0.9983 17.24 2.91 0.8159
    313.15 73.86 0.15 0.9984 13.91 2.71 0.8091
    GO/PVA-2 293.15 94.34 1.93 0.9999 40.23 4.02 0.6667
    303.15 92.59 0.90 0.9998 31.90 3.45 0.8039
    313.15 90.91 0.24 0.9985 20.42 2.79 0.8564
    GO/PVA-3 293.15 100.00 2.88 0.9999 43.88 4.17 0.7662
    303.15 94.34 1.43 0.9999 35.95 3.64 0.7737
    313.15 92.68 0.34 0.9999 23.87 2.93 0.8826
    Notes: qmax—Langmuir adsorption maximum; KL—Langmuir coefficient of distribution of the adsorption; KF—Freundlich coefficient of distribution of the adsorption; n—Freundlich isotherm constant.
    下载: 导出CSV

    表  4  GO/PVA气凝胶对MB吸附过程的热力学参数

    Table  4.   Thermodynamic dynamic parameters of the MB adsorption process onto GO/PVA aerogels

    AerogelT/KG/(kJ·mol−1)H/(kJ·mol−1)S/(J·mol−1·K−1)R2
    GO/PVA-1 293.13 −10.86 −30.91 −88.89 0.8894
    303.15 −9.77
    313.15 −6.72
    GO/PVA-2 293.13 −6.51 −35.70 −99.59 0.9994
    303.15 −5.48
    313.15 −4.52
    GO/PVA-3 293.13 −12.62 −82.89 −239.29 0.9867
    303.15 −10.61
    313.15 −7.82
    Notes: ∆G—Gibbs free energy variation of the adsorption process; ∆H—Enthalpy change of the adsorption process; ∆S—Entropy change of the adsorption process.
    下载: 导出CSV
  • [1] 杨二帅, 蔡晓君, 周梅, 等. 重金属废水的处理技术研究[J]. 当代化工, 2018, 47(1):167-170. doi: 10.3969/j.issn.1671-0460.2018.01.043

    YANG E S, CAI X J, ZHOU M, et. al. Study on treatment technologies of heavy metal wastewater[J]. Contemporary Chemical Industry,2018,47(1):167-170(in Chinese). doi: 10.3969/j.issn.1671-0460.2018.01.043
    [2] BAI H, ZAN X, JUAY J, et al. Hierarchical heteroar-chitectures functionalized membrane for high efficientwater purification[J]. Journal of Menbrane Science,2015,475:245-251. doi: 10.1016/j.memsci.2014.10.036
    [3] WILLNER M R, VIKESLAND P J, et al. Nanomaterial enabled sensors for environmental contaminants[J]. Journal of Nanobiotechnology,2018,16(1):95. doi: 10.1186/s12951-018-0419-1
    [4] 毕玉玺, 凌辉, 唐振平, 等. 磁性介孔TiO2/氧化石墨烯复合材料的制备及其对U(Ⅵ)的吸附[J]. 复合材料学报, 2019, 36(9):2176-2186.

    BI Y X, LING H, TANG Z P, et al. Preparation of magnetic mesoporous TiO2/graphene oxide composites and their adsorption for U(Ⅵ)[J]. Acta Materiae Compositae Sinica,2019,36(9):2176-2186(in Chinese).
    [5] CHENG Z, LIAO J, HE B, et al. One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis[J]. ACS Sustainable Chemistry & Engineering,2015,3(7):1677-1685.
    [6] LI Y H, DU Q J, LIU T H, et, al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes[J]. Chemical Engineering Research & Design,2013,92(2):361-368.
    [7] SHARMA P, DAS M R, et al. Removal of a cationic dye from aqueous solution using graphene oxide nanosheets: Investigation of Adsorption[J]. Journal of Chemical and Engineering Data,2013,58(1):151-158. doi: 10.1021/je301020n
    [8] RAMESHA G K, KUMARA A V, MURALIDHARA H B, et al. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes[J]. Journal of Colloid and Interface Science,2011,361(1):270-277. doi: 10.1016/j.jcis.2011.05.050
    [9] ERSAN G, KAYA Y, APUL O G, et al. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions[J]. Science of the Total Environment,2016,565:811-817. doi: 10.1016/j.scitotenv.2016.03.224
    [10] PERREAULT F, DEFARIA A F, ELIMELECH M, et al. Environmental applications of graphene-based nanomaterials[J]. Chemical Society Reviews,2015,44(16):5861-5896. doi: 10.1039/C5CS00021A
    [11] ERSAN G, APUL O G, PERREAULT F, et al. Adsorption of organic contaminants by graphene nanosheets: A review[J]. Water Research,2017,126:385-398. doi: 10.1016/j.watres.2017.08.010
    [12] WANG J, CHEN B L, XING B S, et, al. Wrinkles and folds of activated graphene nanosheets as fast and efficient adsorptive sites for hydrophobic organic contaminants[J]. Environmental Science & Technology,2016,50(7):3798-3808.
    [13] CHEN X X, CHEN B L, et, al. Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets[J]. Environmental Science & Technology,2015,49(10):6181-6189.
    [14] AMADEI C A, MONTESSORI A, KADOW J P, et, al. Role of oxygen functionalities in graphene oxide architectural laminate subnanometer spacing and water transport[J]. Environmental Science & Technology,2017,51(8):4280-4288.
    [15] COMPTON O C, NGUYEN S T, et, al. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials[J]. Small,2010,6(6):711-723. doi: 10.1002/smll.200901934
    [16] HAN Y, XUE T, ZHEN Y, et al. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue[J]. Journal of Hazardous Materials,2014,268(15):191-198.
    [17] 林本兰, 吴兰兰, 崔升, 等. 新型重金属离子吸附剂的研究进展[J]. 材料导报, 2015, 29(19):18-23.

    LIN B L, WU L L, CUI S, et al. Research progress of novel adsorbents of heavy metal ions[J]. Materials Reports,2015,29(19):18-23(in Chinese).
    [18] ALHWAIGE A A, HERBERT M M, ALHASSAN S M, et al. Laponite/multigraphene hybrid-reinforced poly(vinyl alcohol) aerogels[J]. Polymer,2016,91:180-186.
    [19] XIAO J, ZHANG J, LV W, et al. Multifunctional gr-aphene/poly(vinyl alcohol) aerogels: In situ hydrothermal preparation and applications in broad-spectrum adsorption for dyes and oils[J]. Carbon,2017,123:354-363.
    [20] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical,1958,80(6):1339. doi: 10.1021/ja01539a017
    [21] DEY R S, HAJRA S, SAHU R K, et al. A rapid room temperature chemical route for the synthesis of graphene: Metal-mediated reduction of graphene oxide[J]. Chemical Communications,2012,48(12):1787. doi: 10.1039/c2cc16031e
    [22] FENG Y, FENG N, DU G, et al. A green reduction of graphene oxide via starch-based materials[J]. RSC Advances,2013,3(44):21466. doi: 10.1039/c3ra43025a
    [23] PARK S, RUOFF R S, et al. Chemical methods for the production of graphenes[J]. Nature Nanotechnology,2009,4(4):217-224. doi: 10.1038/nnano.2009.58
    [24] SHEN J, HU Y, SHI M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J]. Chemistry of Materials,2009,21(15):3514-3520. doi: 10.1021/cm901247t
    [25] 唐振平, 毕玉玺, 刘迎九等. 氧化石墨烯/有机改性膨润土复合材料的制备及其对Cd (Ⅱ) 的吸附[J]. 复合材料学报, 2018, 35(11):3196-3204.

    TANG Z P, BI Y X, LIU Y J, et al. Preparation of graphene oxide/organo-modified bentonite composites and their adsorption on Cd (Ⅱ)[J]. Acta Materiae Compositae Sinica,2018,35(11):3196-3204(in Chinese).
    [26] LI Q, LI Y H, MA X M, et al. Filtration and adsorption properties of porous calcium alginate membranefor methylene blue removal from water[J]. Chemical Engineering Journal,2017,316:623-630. doi: 10.1016/j.cej.2017.01.098
    [27] 王磊, 白成玲, 朱振亚. 氧化石墨烯/海藻酸钠复合膜对Pb(Ⅱ)的吸附性能和机制[J]. 复合材料学报, 2020, 37(3):195-203.

    WANG L, BAI C L, ZHU Z Y. Adsorption properties and mechanism of Pb(Ⅱ) adsorbed by graphene oxide/sodium alginate composite membrane[J]. Acta Materiae Compositae Sinica,2020,37(3):195-203(in Chinese).
    [28] 郭成, 郝军杰, 李明阳, 等. 海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(Ⅵ)的吸附性能和机制[J]. 复合材料学报, 2021, 38(7):2140-2151.

    GUO C, HAO J J, LI M Y, et al. Adsorption of Cr(Ⅵ) on polyethyleneimine grafted porous sodium alginate beads and its mechanistic study[J]. Acta Materiae Compositae Sinica,2021,38(7):2140-2151(in Chinese).
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  944
  • HTML全文浏览量:  323
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 修回日期:  2020-11-20
  • 录用日期:  2020-11-25
  • 网络出版日期:  2020-12-03
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回