留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯亚胺修饰富勒烯的制备及其对聚丙烯热氧稳定性的影响

沈海峰 邵胜栋 王子路 郭正虹

沈海峰, 邵胜栋, 王子路, 等. 聚乙烯亚胺修饰富勒烯的制备及其对聚丙烯热氧稳定性的影响[J]. 复合材料学报, 2020, 37(11): 1-6 doi:  10.13801/j.cnki.fhclxb.20200421.004
引用本文: 沈海峰, 邵胜栋, 王子路, 等. 聚乙烯亚胺修饰富勒烯的制备及其对聚丙烯热氧稳定性的影响[J]. 复合材料学报, 2020, 37(11): 1-6 doi:  10.13801/j.cnki.fhclxb.20200421.004
Haifeng SHEN, Shengdong SHAO, Zilu WANG, Zhenghong GUO. Preparation of polyethyleneimine-decorated fullerene and its effect on thermal stability of polypropylene[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200421.004
Citation: Haifeng SHEN, Shengdong SHAO, Zilu WANG, Zhenghong GUO. Preparation of polyethyleneimine-decorated fullerene and its effect on thermal stability of polypropylene[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200421.004

聚乙烯亚胺修饰富勒烯的制备及其对聚丙烯热氧稳定性的影响

doi: 10.13801/j.cnki.fhclxb.20200421.004
基金项目: 国家自然科学基金(51991355)
详细信息
    通讯作者:

    郭正虹,博士,副教授,研究方向为阻燃高分子复合材料的研究 E-maill:guozhenghong@nit.zju.edu.cn

  • 中图分类号: O631.2+1

Preparation of polyethyleneimine-decorated fullerene and its effect on thermal stability of polypropylene

  • 摘要: 利用聚乙烯亚胺(PEI)分子中活泼的—NH—与富勒烯(C60)结构中C=C键之间的加成反应,制备了PEI修饰C60杂化物(C60-PEI),并采用FTIR、TEM等测试方法对C60-PEI的分子结构和形态进行表征。采用熔融共混法制备了C60-PEI/聚丙烯(PP)复合材料,并对其热性能和阻燃性能进行研究。热失重分析结果表明,C60-PEI可以更有效地发挥C60的自由基捕捉作用,对PP热稳定性的提高效果较C60更明显;氧化诱导测试(OIT)结果表明,C60-PEI/PP复合材料比C60/PP复合材料具有更优异的抗氧性能;微型量热测试也表明,燃烧过程中C60-PEI/PP复合材料比C60/PP复合材料具有更低的热释放量。
  • 图  1  C60、PEI和C60-PEI的FTIR图谱

    Figure  1.  FTIR spectra of C60, PEI and C60-PEI

    图  2  C60-PEI的合成示意图

    Figure  2.  Schematic diagram of C60-PEI synthesis

    图  3  C60(a)和C60-PEI(b)的TEM图像

    Figure  3.  TEM images of C60(a) and C60-PEI(b)

    图  4  C60、PEI和C60-PEI在N2气氛下的TG曲线

    Figure  4.  TG curves of C60, PEI and C60-PEI in N2

    图  5  PP、3C60/PP、(3C60+PEI)/PP、3C60-PEI/PP和3PEI/PP复合材料空气气氛下的TG曲线

    Figure  5.  TG curves for PP, 3C60/PP, (3C60+PEI)/PP, 3C60-PEI/PP and 3PEI/PP composites in air

    图  6  PP、3C60/PP、(3C60+PEI)/PP、3C60-PEI/PP和3PEI/PP复合材料空气气氛下的DTG曲线

    Figure  6.  DTG curves for PP, 3C60/PP, (3C60+PEI)/PP, 3C60-PEI/PP and 3PEI/PP composites in air

    图  7  PP、3C60/PP、(3C60+PEI)/PP和3C60-PEI/PP复合材料180℃的氧化诱导时间(OIT)曲线

    Figure  7.  Oxidation induced time (OIT) curves of PP, 3C60/PP, (3C60+PEI)/PP and 3C60-PEI/PP composites at 180℃

    图  8  PP、3C60/PP、(3C60+PEI)/PP和3C60-PEI/PP复合材料的热释放率曲线

    Figure  8.  Heat release rate curves of PP, 3C60/PP, (3C60+PEI)/PP and 3C60-PEI/PP composites

    表  1  富勒烯/聚丙烯(C60/PP)和C60-聚乙烯亚胺(PEI)/PP复合材料的配方

    Table  1.   Composition of fullrene/polypropylene(C60/PP) and C60-polyethyleneimine(PEI)/PP composites

    SamplePP1C60/PP2C60/PP3C60/PP1C60−PEI/PP2C60−PEI/PP3C60−PEI/PP(3C60+PEI)/PP
    PP/wt% 100 99 98 97 99 98 97 97
    C60/wt% 1 2 3 2.75
    C60-PEI/wt% 1 2 3
    PEI/wt% 0.25
    下载: 导出CSV

    表  2  C60/PP和C60-PEI/PP复合材料空气气氛下的TG测试结果

    Table  2.   TG test results of C60/PP and C60-PEI/PP composites in air

    SamplePP1C60/ PP2C60/PP3C60/PP1C60-PEI/PP2C60-PEI/PP3C60-PEI/PP(3C60+PEI)/PP
    Tonset/℃ 266.1 285.5 293.5 303.9 293.2 296.7 312.0 271.3
    Tmax/℃ 381.2 397.8 400.0 417.5 399.2 404.6 427.5 396.8
    Residue at 800oC/wt% 0.3 1.3 0.7 1.2 0.6 0 0 0.4
    Notes: Tonset—Initial degradation temperature; Tmax—Maximum degradation temperature.
    下载: 导出CSV

    表  3  PP、3C60/PP、(3C60+PEI)/PP和3C60-PEI/PP复合材料180℃的OIT测试结果

    Table  3.   OIT test results of PP, 3C60/PP, (3C60+PEI)/PP and 3C60-PEI/PP composites at 180℃

    SamplePP3C60/PP(3C60+PEI)/PP3C60−PEI/PP
    tmax/min 35.5 37.4 32.5 48.5
    OIT/min 5.8 10.2 2.6 17.5
    ΔH/(J·g−1) 6 119 5 176 5 088 3 909
    Notes: tmax—Time corresponding to maximum oxidant speed; ΔH—Enthalpy.
    下载: 导出CSV

    表  4  PP、3C60/PP、(3C60+PEI)/PP和3C60-PEI/PP复合材料微型量热测试结果

    Table  4.   Micro-calorimeter test results of PP, 3C60/PP, (3C60+PEI)/PP and 3C60-PEI/PP composites

    SamplePP3C60/PP(3C60+PEI)/PP3C60−PEI/ PP
    PHRR/(W·g−1) 1 176 1 003 1 173 880
    THR/(kJ·g−1) 41.9 39.8 42.8 37.5
    Tp/℃ 486 488 487 489
    Notes: PHRR—Peak of heat release rate; THR—Total heat release; Tp—Temperature to PHRR.
    下载: 导出CSV
  • [1] 李建军, 欧育湘. 阻燃理论[M]. 北京: 科学出版社, 2013.

    LI Jiangjun, OU Yuxiang. Theory of flame retardancy[M]. Beijing: Science Press, 2013(in Chinese).
    [2] 欧育湘. 阻燃剂[M]. 北京: 国防工业出版社, 2009.

    OU Yuxiang. Flame retardants[M]. Beijing: National Defence Industry Press, 2009(in Chinese).
    [3] RUØYCKA M, GLEBULTOWICZ J, WROCZY-SKI P. Present-day toxicity of smoke inhalation[J]. Acta Poloniae Pharmaceutica Durg Research, 2018, 75(2): 281-295.
    [4] VOORHEES K J. Analysis of soot produced from the combustion of polymeric materials[M]//NELSON G L. Fire and polymers Ⅱ. Washington: American Chemical Society, 1995: 393-406.
    [5] SAOTOME T, KOKUBO K, SHIRAKAWA S, et al. Polymer nanocomposites reinforced with C60 fullerene: Effect of hydroxylation[J]. Journal of Composite Materials,2011,45(25):2595-2601. doi:  10.1177/0021998311416682
    [6] SONG P A, LIU H, SHEN Y, et al. Fabrication of dendrimer-like fullerene (C60)-decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites[J]. Journal of Materials Chemistry,2009,19(9):1305-1313. doi:  10.1039/b815610g
    [7] ZHAO L P, GUO Z H, RAN S Y, et al. The effect of fullerene on the resistance to thermal degradation of polymers with different degradation processes[J]. Journal of Thermal Analysis and Calorimetry,2014,115(2):1235-1244. doi:  10.1007/s10973-013-3453-0
    [8] ZHAO L P, GUO Z H, CAO Z H, et al. Thermal and thermo-oxidative degradation of high density polyethylene/fullerene composites[J]. Polymer Degradation and Stability,2013,98(10):1953-1962. doi:  10.1016/j.polymdegradstab.2013.07.020
    [9] 周强, 卞军, 王刚, 等. 功能化纳米氧化石墨烯/POE-g-MAH/聚苯乙烯复合材料的制备与性能[J]. 复合材料学报, 2016, 33(2):240-248.

    ZHOU Qiang, BIAN Jun, WANG Gang, et al. Preparation and property of functionalized nano graphene oxide/POE-g-MAH/polystyrene composite[J]. Acta Materiae Compositae Sinica,2016,33(2):240-248(in Chinese).
    [10] 何飞雄, 卞军, 蔺海兰, 等. 功能化纳米石墨烯片/PP-PP-g-MAH复合材料的制备与表征[J]. 复合材料学报, 2015, 32(1):47-53.

    HE Feixiong, BIAN Jun, LIN Hailan, et al. Preparation and characterization of functionalized nano-graphene sheet/POE-g-MAH/polystyrene composite[J]. Acta Materiae Compositae Sinica,2015,32(1):47-53(in Chinese).
    [11] IDUMAH C I, HASSAN A, AFFAM A C. A review of recent developments in flammability of polymer nanocomposites[J]. Reviews in Chemical Engineering,2015,31(2):149-177.
    [12] XING W Y, YANG W, YANG W J, et al. Functionalized carbon nanotubes with phosphorus- and nitrogen-containing agents: Effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites[J]. ACS Applied Materials & Interfaces,2016,8(39):26266-26274.
    [13] DITTRICH B, WARTIG K A, HOFMANN D, et al. The influence of layered, spherical, and tubular carbon nanomaterials’ concentration on the flameretardancy of polypropylene[J]. Polymer Composites,2015,36(7):1230-1241. doi:  10.1002/pc.23027
    [14] 卫保娟, 肖潭, 李雄俊, 等. 石墨烯与多壁碳纳米管增强环氧树脂复合材料的制备及性能[J]. 复合材料学报, 2012, 29(5):53-60.

    WEI Baojuan, XIAO Tan, LI Xiongjun, et al. Preparation and properties of graphene and MWCNTs reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica,2012,29(5):53-60(in Chinese).
    [15] LIU J C, ZHANG Y B, GUO Y B, et al. Effect of carbon black on the thermal degradation and flammability properties of flame-retarded high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite[J]. Polymer Composites,2018,39(3):770-782.
    [16] DITTRICH B, WARTIG K A, HOFMANN D, et al. Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flameretarded polypropylene nanocomposites[J]. Polymers for Advanced Technologies,2013,24(10):916-926.
    [17] GUO Z H, YE R F, ZHAO L P, et al. Fabrication of fullerene-decorated graphene oxide and its influence on flame retardancy of high density polyethylene[J]. Composites Science and Technology,2016,129:123-129. doi:  10.1016/j.compscitech.2016.04.024
    [18] SONG P A, ZHAO L P, CAO Z H, et al. Polypropylene nanocomposites based on C60-decorated carbon nanotubes: Thermal properties, flammability, and mechanical properties[J]. Journal of Materials Chemistry,2011,21(21):7782-7788. doi:  10.1039/c1jm10395d
    [19] KRÄTSCHMER W, FOSTIROPOULOS K, HUFFMAN D R. The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule[J]. Chemical Physics Letters,1990,170(2-3):167-170. doi:  10.1016/0009-2614(90)87109-5
    [20] 王冬梅, 曹金丽, 张怡, 等. 红外光谱法研究聚乙烯亚胺的结构[J]. 光谱学与光谱分析, 2016, 36(10):199-200.

    WANG Dongmei, CAO Jinli, ZHANG Yi, et al. The structure characterization of polyethylenimine vis FTIR[J]. Spectroscopy and Spectral Analysis,2016,36(10):199-200(in Chinese).
    [21] ZANETTI M, CAMINO G, REICHERT P, et al. Thermal behaviour of poly(propylene) layered silicate nanocomposites[J]. Macromolecular Rapid Communications,2001,22(3):176-180.
  • [1] 邓云飞, 曾宪智, 周翔, 李向前, 熊健.  复合材料褶皱夹芯结构研究进展, 复合材料学报. 2020, 37(12): 1-18. doi: 10.13801/j.cnki.fhclxb.20200903.001
    [2] 石经纬, 赵娟, 刘传军, 李东升.  复合材料翼面壁板轴压稳定性, 复合材料学报. 2020, 37(6): 1321-1333. doi: 10.13801/j.cnki.fhclxb.20190917.003
    [3] 石经纬, 赵娟, 刘传军, 李东升.  复合材料翼面壁板剪切稳定性, 复合材料学报. 2020, 37(7): 1590-1600. doi: 10.13801/j.cnki.fhclxb.20191011.001
    [4] 王凯, 贺强.  聚甲基丙烯酰亚胺泡沫夹层结构全生命周期的关键技术研究进展, 复合材料学报. 2020, 37(8): 1805-1822. doi: 10.13801/j.cnki.fhclxb.20200512.002
    [5] 高巧春, 张庆法, 任夏瑾, 卢文玉, 周亮, 蔡红珍.  造纸污泥/高密度聚乙烯复合材料的制备及性能, 复合材料学报. 2020, 37(6): 1243-1250. doi: 10.13801/j.cnki.fhclxb.20191014.002
    [6] 顾升, 王雪, 徐国祺.  基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料, 复合材料学报. 2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002
    [7] 吴楠, 郝旭峰, 史耀辉, 鞠博文, 钱元, 蔡登安, 周光明.  高精度碳纤维增强树脂复合材料夹层天线面板热变形影响参数仿真与实验, 复合材料学报. 2020, 37(7): 1619-1628. doi: 10.13801/j.cnki.fhclxb.20191107.002
    [8] 闫艳红, 王腾彬, 吴子健, 卢欢, 贾志宁.  基于正交设计的纳米蛇纹石-纳米氧化镧/聚四氟乙烯复合材料在沙尘环境下的摩擦学性能, 复合材料学报. 2020, 37(7): 1522-1530. doi: 10.13801/j.cnki.fhclxb.20191024.001
    [9] 王新玲, 陈永杰, 钱文文, 李可, 朱俊涛.  高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验, 复合材料学报. 2020, 37(): 1-10.
    [10] 刘浩, 姚卫棠.  Ti基MXene及其复合材料在金属离子电池中的进展, 复合材料学报. 2020, 37(): 1-20. doi: 10.13801/j.cnki.fhclxb.20200717.001
    [11] 周典瑞, 高亮, 霍红宇, 张宝艳.  热塑性树脂基复合材料用碳纤维上浆剂研究进展, 复合材料学报. 2020, 37(8): 1785-1795. doi: 10.13801/j.cnki.fhclxb.20200507.001
    [12] 周浪, 王涛.  石墨烯/功能聚合物复合材料, 复合材料学报. 2020, 37(5): 997-1014. doi: 10.13801/j.cnki.fhclxb.20190919.001
    [13] 韩耀璋, 李进, 张佃平, 康少付, 马鹏, 周少雄.  原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响, 复合材料学报. 2020, 37(7): 1531-1538. doi: 10.13801/j.cnki.fhclxb.20191017.001
    [14] 乔雪涛, 王朋, 闫存富, 许华威, 张力斌, 贾克, 杨泽, 吴隆.  钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能, 复合材料学报. 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
    [15] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [16] 胡晓兰, 周川, 代少伟, 刘文军, 李伟东, 周玉敬, 邱虹, 白华.  氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能, 复合材料学报. 2020, 37(5): 1070-1080. doi: 10.13801/j.cnki.fhclxb.20191021.001
    [17] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. 2020, 37(7): 1571-1580. doi: 10.13801/j.cnki.fhclxb.20191120.001
    [18] 段雯雯, 王建军, 辛振祥, 王洪振.  环氧化天然橡胶改性石墨烯-炭黑/天然橡胶复合材料的制备及性能, 复合材料学报. 2020, 37(7): 1667-1674. doi: 10.13801/j.cnki.fhclxb.20191125.002
    [19] 牟明明, 袁光明, 陈世尧.  纳米TiO2对木纤维/聚丙烯复合材料抗紫外老化性能的影响, 复合材料学报. 2020, 37(6): 1268-1277. doi: 10.13801/j.cnki.fhclxb.20190929.004
    [20] 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证, 复合材料学报. 2010, 27(5): 108-115.
  • 加载中
计量
  • 文章访问数:  242
  • HTML全文浏览量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-05
  • 录用日期:  2020-02-08
  • 网络出版日期:  2020-04-22

目录

    /

    返回文章
    返回