留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型

杲晓龙 王俊颜 郭君渊 刘超

杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11): 3925-3938. doi: 10.13801/j.cnki.fhclxb.20201218.002
引用本文: 杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11): 3925-3938. doi: 10.13801/j.cnki.fhclxb.20201218.002
GAO Xiaolong, WANG Junyan, GUO Junyuan, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3925-3938. doi: 10.13801/j.cnki.fhclxb.20201218.002
Citation: GAO Xiaolong, WANG Junyan, GUO Junyuan, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3925-3938. doi: 10.13801/j.cnki.fhclxb.20201218.002

循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型

doi: 10.13801/j.cnki.fhclxb.20201218.002
基金项目: 浙江省交通运输厅科技计划项目(2019-GCKY-01)
详细信息
    通讯作者:

    王俊颜,博士,特聘研究员,博士生导师,研究方向为超高性能混凝土及其结构  E-mail:14529@tongji.edu.cn

  • 中图分类号: TU528

Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading

  • 摘要: 对具有不同拉伸应变特性(应变强化和应变软化)的超高性能混凝土(Ultra high performance concrete, UHPC)进行了单调和循环荷载作用下的直接拉伸试验。试验结果表明:应变强化UHPC基体开裂后进入多点微裂纹分布的应变强化段,达到极限抗拉强度后进入单缝开裂的应变软化段;应变软化UHPC基体开裂后直接进入单缝开裂的应变软化段;循环荷载下两种类型UHPC的轴拉应力-应变曲线包络线与单调荷载下的应力-应变曲线基本一致;基于刚度退化过程建立了两种类型UHPC的轴拉损伤演化方程,根据实测应力-应变曲线和试件的裂缝分布形态建立了两种类型UHPC的轴拉本构关系模型,与试验结果基本吻合;采用能量法研究了应变强化UHPC两阶段轴拉本构关系在数值计算时的等效方法。最后,通过无筋应变强化UHPC抗弯试验梁的数值模拟对本文建立的应变强化UHPC轴拉本构关系模型和损伤演化方程及相关假定进行了验证,结果表明本文建立的应变强化UHPC轴拉本构模型能较好地预测UHPC弯拉构件的极限承载力,轴拉损伤变量能在宏观层面上较好地反应试件的裂缝分布状态。

     

  • 图  1  UHPC轴拉试件

    Figure  1.  UHPC specimen for direct tensile test

    图  2  轴拉试验加载装置

    Figure  2.  Setup of direct tensile test

    图  3  循环试验加载制度

    Figure  3.  Cyclic loading procedures

    图  4  循环荷载条件下UHPC典型的轴拉应力-应变曲线

    Figure  4.  Typical axial tensile stress-strain curves of UHPC under cyclic load

    图  5  循环荷载条件下和单调荷载条件下UHPC轴拉应力-应变曲线对比

    Figure  5.  Comparison of axial tensile stress-strain curves of UHPC under cyclic and monotonic loading

    图  6  不同拉伸荷载阶段应变强化UHPC试件表面裂缝分布情况

    Figure  6.  Distribution of surface cracks for strain hardening UHPC specimens at different tensile loading stages

    ${\varepsilon _{\rm{t}}} $—Tensile strain

    图  7  不同拉伸荷载阶段应变软化UHPC试件表面裂缝分布情况

    Figure  7.  Distribution of surface cracks for strain softening UHPC specimens at different tensile loading stages

    图  8  UHPC轴拉损伤变量变化曲线

    Figure  8.  Variation curves of tensile damage variable of UHPC

    图  9  应变强化UHPC轴拉本构模型

    Figure  9.  Axial tension constitutive model for strain hardening UHPC

    图  10  应变强化UHPC试验曲线与模型曲线的对比

    Figure  10.  Comparison between test curve and model curve for strain hardening UHPC

    图  11  应变软化UHPC轴拉本构模型

    Figure  11.  Axial tension constitutive model for strain softening UHPC

    图  12  应变软化UHPC试验曲线与模型曲线的对比

    Figure  12.  Comparison between test curve and model curve for strain softening UHPC

    图  13  不同单元特征长度时UHPC有限元计算结果和本构关系曲线对比

    Figure  13.  Comparison between numerical simulation results and constitutive relation curves of UHPC with different element characteristic length

    图  14  应变强化UHPC拉伸过程中能量耗散模型

    Figure  14.  Energy dissipation model for strain hardening UHPC under direct tensile loading

    图  15  UHPC单元能量计算结果与真实解对比

    Figure  15.  Comparison of unite energy between calculation results and real solution of UHPC

    图  16  UHPC梁的加载装置和截面尺寸(Unit: mm)

    Figure  16.  Setup and section dimensions for UHPC beam (Unit: mm)

    图  17  UHPC梁的有限元模型

    Figure  17.  Finite element model for UHPC beam

    图  18  不同单元特征长度时UHPC梁荷载-跨中挠度曲线的有限元计算结果和试验对比

    Figure  18.  Comparison of load-span deflection curve between finite element calculation results and test results of UHPC beam with different element characteristic length

    图  19  UHPC梁破坏状态的有限元计算结果和试验结果的对比

    Figure  19.  Comparison of failure mode for UHPC beam between finite element calculation results and test results

    表  1  超高性能混凝土(UHPC)基体配合比(kg/m3)

    Table  1.   Mix proportions of ultra high performance concrete (UHPC) matrix(kg/m3)

    CementSilica fumeGround quartzQuartz sandWaterSuperplasticizer
    745 223.5 223.5 998.3 179.0 13.1
    下载: 导出CSV

    表  2  钢纤维特征参数

    Table  2.   Properties of the steel fibres

    Fiber shapeTensile strength/MPaElastic modulus/GPaLength/mmDiameter/μmDensity/(kg·m−3)
    Straight smooth2500200162007850
    下载: 导出CSV

    表  3  两种类型UHPC的基本力学性能

    Table  3.   Basic mechanical properties of two types of UHPC

    Specimen typefc/MPa (Cov)Ec/GPa (Cov)
    Strain softening UHPC127.8 (0.032)47.4 (0.031)
    Strain hardening UHPC135.2 (0.044)48.9 (0.026)
    Notes: fc─Compressive strength; Ec─Elastic modulus.
    下载: 导出CSV

    表  4  应变强化(SH)UHPC轴拉应力-应变曲线特征参数

    Table  4.   Characteristic parameters of axial tensile stress-strain curve of strain hardening (SH) UHPC

    SpecimenMonotonic loadingCyclic loading
    fte/MPaεte/10−4ftu/MPaεtu/10−3fte/MPaεte/10−4ftu/MPaεtu/10−3
    SH1 9.62 2.2 11.71 4.11 9.75 2.1 12.08 3.49
    SH2 9.76 2.1 11.28 3.72 9.42 2.3 11.65 4.55
    SH3 8.71 2.3 12.01 3.82 10.19 2.1 12.18 4.45
    Mean 9.36 2.2 11.67 3.89 9.79 2.2 11.97 4.16
    Cov 0.06 0.6 0.03 0.05 0.04 0.7 0.02 0.14
    Notes: fte─Elastic ultimate tensile strength; εte─Elastic ultimate tensile strain; ftu─Ultimate tensile strength; εtu─Ultimate tensile strain.
    下载: 导出CSV

    表  5  应变软化(SS)UHPC轴拉应力-应变曲线特征参数

    Table  5.   Characteristic parameters of axial tensile stress-strain curve of strain softening (SS) UHPC

    SpecimenMonotonic loadingCyclic loading
    fte/MPaεte/10−4ftee/MPaftee/ftefte/MPaεte/10−4ftee/MPaftee/fte
    SS19.092.28.450.939.012.48.320.92
    SS29.282.88.830.958.692.28.520.98
    SS39.472.29.473.18.510.89
    Mean9.282.48.640.949.062.68.450.93
    Cov0.021.60.030.020.041.90.010.04
    Notes: ftee─Equivalent tensile strength.
    下载: 导出CSV

    表  6  UHPC轴拉损伤演化方程中的参数

    Table  6.   Parameters for the evolution equation of axial tensile damage of UHPC

    a0t0a1t1b
    Strain hardening UHPC0.10483.13810.85410.0739−0.0118
    Strain softening UHPC0.20373.38320.80760.0763−0.0162
    下载: 导出CSV

    表  7  UHPC梁极限承载力的有限元计算和试验结果对比

    Table  7.   Comparison of ultimate bearing capacity between finite element calculation results and test results of UHPC beam

    BeamPu,test/kNPu,FEA/kNPu,test/Pu,FEA
    Numerical (10 mm)127.23131.270.97
    Numerical (20 mm)127.23126.731.01
    Numerical (30 mm)127.23120.811.05
    Notes: Pu,test─Ultimate bearing capacity obtained from experiment results;Pu,FEA─Ultimate bearing capacity obtained from numerical simulation results.
    下载: 导出CSV
  • [1] GRAYBEAL B A. Material property characterization of ultra-high performance concrete: FHWA-HRT-06-103[R]. US: US Department of Transportation, Federal Highway Administration, 2006.
    [2] 阎培渝. 超高性能混凝土(UHPC)的发展与现状[J]. 混凝土世界, 2010(9):36-41. doi: 10.3969/j.issn.1674-7011.2010.09.009

    YAN Peiyu. The development and current situation of ultra-high performance concrete (UHPC)[J]. World of Concrete,2010(9):36-41(in Chinese). doi: 10.3969/j.issn.1674-7011.2010.09.009
    [3] 赵筠, 廉慧珍, 金建昌. 钢-混凝土复合的新模式—超高性能混凝土(UHPC/UHPFR)之一: 钢-混凝土复合模式的现状、问题及对策与UHPC发展历程[J]. 混凝土世界, 2013, 52(1):67-80.

    ZHAO Jun, LIAN Huizhen, JIN Jianchang. A new model of steel concrete composite structure-ultra high performance concrete (UHPC/UHPFRC): The status quo, problems and countermeasures and the development process of UHPC[J]. China Concrete,2013,52(1):67-80(in Chinese).
    [4] 王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐学报, 2016, 35(1):141-149.

    WANG Dehui, SHI Caijun, WU Linmei. Research and applications of ultra-high performance concrete (UHPC) in China[J]. Bulletin of the Chinese Ceramic Society,2016,35(1):141-149(in Chinese).
    [5] 杨娟, 朋改非, 税国双. 再生钢纤维增韧超高性能混凝土的力学性能[J]. 复合材料学报, 2019, 36(8):1949-1956.

    YANG Juan, PENG Gaifei, SHUI Guoshuang. Mechanical properties of recycled steel fiber reinforced ultra high performance concrete[J]. Acta Materiae Compositae Sinica,2019,36(8):1949-1956(in Chinese).
    [6] SAKR M A, EL-KHORIBY S R, KHALIFA T M, et al. Modeling of RC shear walls strengthened with ultra-high performance fiber reinforced concrete (UHPFRC) jackets[J]. Engineering Structures,2019,200(9):1-13.
    [7] 梁兴文, 王莹, 于婧, 等. 预制UHPC模板及采用预制模板的RC板受力性能及承载力分析[J]. 工程力学, 2019, 36(7):146-155.

    LIANG Xingwen, WANG Ying, YU Jing, et al. Mechanical properties and strength of prefabricated UHPC formwork and RC slab with prefabricated UHPC formwork[J]. Engineering Mechanics,2019,36(7):146-155(in Chinese).
    [8] 王俊颜, 郭君渊, 肖汝诚, 等. 高应变强化超高性能混凝土的裂缝控制机理和研究[J]. 土木工程学报, 2017, 50(11):10-17.

    WANG Junyan, GUO Junyuan, XIAO Rucheng, et al. Study on crack control mechanical of strain-harding ultra-high performance concrete[J]. China Civil Engineering Journal,2017,50(11):10-17(in Chinese).
    [9] WILLE K, JOO K D, NAAMAN A E. Strain hardening UHP FRC with low fiber contents[J]. Materials & Structures,2011,44(3):583-598.
    [10] WILLE K, TAWIL S E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP FRC) under direct tensile loading[J]. Cement & Concrete Composites,2014,48:53-66.
    [11] KANG S T, CHOI J I, KOH K T, et al. Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete[J]. Composite Structures,2016,145(6):37-42.
    [12] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8):50-58. doi: 10.3969/j.issn.1001-7372.2015.08.007

    ZHANG Zhe, SHAO Xudong, LI Wenguang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport,2015,28(8):50-58(in Chinese). doi: 10.3969/j.issn.1001-7372.2015.08.007
    [13] SETRA-AFGC. Ultra high performance fiber-reinforced concretes recommendations[S]. France: AFGC, 2013.
    [14] MCS-EPFL. Ultra-high performance fibre reinforced cement-based composites (UHPFRC): Construction material, dimensioning and application[S]. Switzerland: Swiss Federal Institute of Technology, 2016.
    [15] 管品武, 涂雅筝, 张普, 等. 超高性能混凝土单轴拉压本构关系研究[J]. 复合材料学报, 2019, 36(5):1295-1305.

    GUAN Pinwu, TU Yazheng, ZHANG Pu, et al. A review on constitutive relationship of ultra-high-performance concrete under uniaxial compression and tensile[J]. Acta Materiae Compositae Sinica,2019,36(5):1295-1305(in Chinese).
    [16] KRAHL P A, CARRAZEDO R, ELDEBS M K, et al. Mechanical damage evolution in UHPFRC: Experimental and numerical investigation[J]. Engineering Structures,2018,170(1):63-77.
    [17] PASCHALIS S A, LAMPROPOULOS A P. Ultra-high-performance fiber-reinforced concrete under cyclic loading[J]. ACI Materials Journal,2016,113(4):419-427.
    [18] 中华人民共和国住房和城乡建设部. 活性粉末混凝土: GB/T 31387—2015[S]. 北京: 中国标准出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Reactive powder concrete: GB/T 31387—2015[S]. Beijing: China Standard Press, 2015(in Chinese).
    [19] TJIPTOBROTO P, HANSEN W. Tensile strain hardening and multiple cracking in high-performance cement-based composites containing discontinuous fibers[J]. ACI Materials Journal,1993,90(1):16-25.
    [20] 任晓丹. 混凝土随机损伤本构关系试验研究[D]. 上海: 同济大学, 2006.

    REN Xiaodan. Experimental research on stochastic damage constitutive law for concrete[D]. Shanghai: Tongji University, 2006(in Chinese).
    [21] WANG, J Y, GUO, J Y. Damage investigation of ultra high performance concrete under direct tensile test using acoustic emission techniques[J]. Cement & Concrete Composites,2018,88(1):17-28.
    [22] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
    [23] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4):59-67.

    NIE Jianguo, WANG Yuhang. Comparison study of constitutive model of concrete in abaqus for static analysis of structures[J]. Engineering Mechanics,2013,30(4):59-67(in Chinese).
  • 加载中
图(19) / 表(7)
计量
  • 文章访问数:  1737
  • HTML全文浏览量:  687
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 录用日期:  2020-12-08
  • 网络出版日期:  2020-12-18
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回