留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP复杂几何结构区相控阵超声检测建模与声传播规律

罗忠兵 张松 钱恒奎 曹欢庆 苏慧敏 林莉

罗忠兵, 张松, 钱恒奎, 等. CFRP复杂几何结构区相控阵超声检测建模与声传播规律[J]. 复合材料学报, 2021, 38(11): 3672-3681. doi: 10.13801/j.cnki.fhclxb.20201016.003
引用本文: 罗忠兵, 张松, 钱恒奎, 等. CFRP复杂几何结构区相控阵超声检测建模与声传播规律[J]. 复合材料学报, 2021, 38(11): 3672-3681. doi: 10.13801/j.cnki.fhclxb.20201016.003
LUO Zhongbing, ZHANG Song, QIAN Hengkui, et al. Modelling and wave propagation behavior of phased array ultrasonic testing on carbon fiber reinforced plastics components with complex geometry[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3672-3681. doi: 10.13801/j.cnki.fhclxb.20201016.003
Citation: LUO Zhongbing, ZHANG Song, QIAN Hengkui, et al. Modelling and wave propagation behavior of phased array ultrasonic testing on carbon fiber reinforced plastics components with complex geometry[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3672-3681. doi: 10.13801/j.cnki.fhclxb.20201016.003

CFRP复杂几何结构区相控阵超声检测建模与声传播规律

doi: 10.13801/j.cnki.fhclxb.20201016.003
基金项目: 国家重点基础研究发展计划(2014CB046505);大连市高层次人才创新支持计划(青年科技之星)(2018RQ40);辽宁省“兴辽英才计划”项目(XLYC1902082)
详细信息
    通讯作者:

    罗忠兵,博士,副教授,博士生导师,研究方向为材料无损检测与评价  E-mail:zhbluo@dlut.edu.cn

  • 中图分类号: V258; TB55

Modelling and wave propagation behavior of phased array ultrasonic testing on carbon fiber reinforced plastics components with complex geometry

  • 摘要: 为厘清碳纤维增强树脂基复合材料(Carbon fiber reinforced plastics,CFRP)复杂几何构件相控阵超声检测中声传播规律,围绕CFRP材料R区开展了弹性特性表征、有限元建模、声场计算及实验验证工作。基于超声液浸背反射法和模拟退火算法求解了CFRP单向板刚度矩阵反问题,并借助Bond变换实现了R区弹性特性的定量描述。结合微观组织分析等获取材料、几何特征,建立了虑及曲面形状、叠层、弹性各向异性的R区相控阵超声检测有限元模型,计算了R区相控阵超声检测A、B扫描信号,发现存在结构噪声和缺陷伪像。在此基础上研究CFRP材料R区瞬态声场并与CFRP平板、弹性各向同性R区和0°单向板R区情况对比,阐明了结构噪声和缺陷伪像的形成机制:弹性各向异性叠层结构导致倾斜入射的超声波发生反射和折射,与沿肋板传播的快速波混叠在R区形成结构噪声,同时多向板R区两侧肋板反射导致缺陷伪像,即材料弹性各向异性与构件曲面叠层结构耦合共同影响缺陷的精准辨识。

     

  • 图  1  碳纤维增强树脂基复合材料(CFRP)层板结构示意图:(a) 单向平板;(b) 多向平板;(c) 多向板R区

    Figure  1.  Diagram of carbon fiber reinforced plastics (CFRP) laminates: (a) Unidirectional plate; (b) Multidirectional plate; (c) Multidirectional radii

    图  2  超声液浸背反射法测试平台:(a) 超声C扫描系统;(b) 测角装置

    Figure  2.  Ultrasonic back reflection method: (a) Ultrasonic C scan system; (b) Angle measuring device

    图  3  CFRP单向板yoz面和xoz面内声速随入射角度变化

    Figure  3.  Phase velocity of unidirectional CFRP plate versus incident angle in yoz and xoz planes

    图  4  模拟退火算法反演弹性常数流程图

    Figure  4.  Flow chart of simulated annealing algorithm for elastic constants inversion

    图  5  CFRP材料T型试样:(a) 试样;(b) 金相照片(20×)

    Figure  5.  T shaped CFRP specimen: (a) Specimen; (b) Metallograph (20×)

    图  6  CFRP材料R区相控阵超声检测(PAUT)模型

    Figure  6.  Phased array ultrasonic testing (PAUT) model of CFRP radii

    图  7  实验设备:(a) M2M Multi 2000 相控阵超声系统;(b) 相控阵探头;(c) 探头保持架

    Figure  7.  Experimental equipments: (a) M2M Multi 2000 PAUT system; (b) PAUT probe; (c) Probe holder

    图  8  相控阵超声探头16号阵元在CFRP材料R区A扫描信号比较:(a) 模拟;(b) 实验

    Figure  8.  Comparison for A-scan signal of 16th element in PAUT on CFRP radii: (a) Simulation; (b) Experiment

    图  9  相控阵超声检测CFRP材料R区B扫描图像:(a) 模拟;(b) 实验

    Figure  9.  B-scan image of PAUT on CFRP radii: (a) Simulation; (b) Experiment

    图  10  相控阵超声检测模型:(a) CFRP平板;(b) 弹性各向同性R区;(c) 0°单向板R区

    Figure  10.  PAUT model: (a) CFRP plate; (b) Elastically isotropic radii; (c) 0°unidirectional radii

    图  11  相控阵超声第16阵元A扫描信号:(a) CFRP平板;(b) 弹性各向同性R区;(c) 0°单向板R区

    Figure  11.  A-scan signal of 16th element of PAUT: (a) CFRP plate; (b) Elastically isotropic radii; (c) 0° unidirectional radii

    图  12  相控阵超声检测B扫描图像:(a) CFRP平板;(b) 弹性各向同性R区;(c) 0°单向板R区

    Figure  12.  B-scan image of PAUT: (a) CFRP plate; (b) Elastically isotropic radii; (c) 0°unidirectional radii

    图  13  瞬态声场分布:(a) CFRP平板;(b) 弹性各向同性R区;(c) 0°单向板R区;(d) 多向板R区

    Figure  13.  Transient wave field: (a) CFRP plate; (b) Elastically isotropic radii; (c) 0° unidirectional radii; (d) Multidirectional radii

  • [1] 益小苏, 杜善义, 张立同. 复合材料手册[M]. 北京: 化学工业出版社, 2009: 365-368.

    YI X S, DU S Y, ZHANG L T. Composite materials brochure[M]. Beijing: Chemical Industry Press, 2009: 365-368(in Chinese).
    [2] OLIVEIRA T L L, ZITOUNE R, ANCELOTTI A C, et al. Smart machining: monitoring of CFRP milling using AE and IR[J]. Composite Structures,2020,249:112611. doi: 10.1016/j.compstruct.2020.112611
    [3] MA X S, BIAN K, LIU H G, et al. Numerical and experimental investigation of the interface properties and failure strength of CFRP T-stiffeners subjected to pull-off load[J]. Materials and Design,2020,185:108231. doi: 10.1016/j.matdes.2019.108231
    [4] 石经纬, 赵娟, 刘传军, 等. 复合材料翼面壁板轴压稳定性[J]. 复合材料学报, 2020, 37(6):1321-1333.

    SHI J W, ZHAO J, LIU C J, et al. Stability of composite stiff ened panels under compression[J]. Acta Materiae Compositae Sinica,2020,37(6):1321-1333(in Chinese).
    [5] HOPKINS D, NEAU G, LE B L. Advanced phased-array technologies for ultrasonic inspection of complex composite parts[J]. Cinde Journal,2012,33(2):273-282.
    [6] 何方成, 王铮, 史丽军. 复合材料制件拐角部位超声检测技术[J]. 材料工程, 2011(7):80-84. doi: 10.3969/j.issn.1001-4381.2011.07.017

    HE F C, WANG Z, SHI L J. Ultrasonic testing technique for the inspection of defects in the corner of composites[J]. Journal of Materials Engineering,2011(7):80-84(in Chinese). doi: 10.3969/j.issn.1001-4381.2011.07.017
    [7] BULLINGER O, SCHNARS U, SCHULTING D, et al. Laminographic inspection of large carbon fibre composite aircraft-structures at airbus[C] // PURSCHKE M. 19th World Conference on Non-Destructive Testing. Munich Germany: Curran Associates, Inc. 2016: 204-213.
    [8] GEORGESON G. A century of Boeing innovation in NDE[J]. Boeing Technology Journal,2016:1-11.
    [9] HABERMEHL J, LAMARRE A. Ultrasonic phased array tools for composite inspection during maintenance and manufacturing[C] // GENG R S. 17th World Conference on Nondestructive Testing. Shanghai China: Curran Associates, Inc. 2008: 3070-3075.
    [10] HU H J, ZHU X, WANG C H, et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces[J]. Science Advances,2018,4(3):3979. doi: 10.1126/sciadv.aar3979
    [11] ROBERT S, CASULA O, ROY O, et al. Real-time nondestructive testing of composite aeronautical structures with a self-adaptive ultrasonic technique[J]. Measurement Science and Technology,2013,24:074011. doi: 10.1088/0957-0233/24/7/074011
    [12] LIN L, CAO H Q, LUO Z B. Total focusing method imaging of multidirectional CFRP laminate with model-based time delay correction[J]. NDT and E International,2018,97:51-58. doi: 10.1016/j.ndteint.2018.03.011
    [13] LIN L, CAO H Q, LUO Z B. Dijkstra’s algorithm-based ray tracing method for total focusing method imaging of CFRP laminates[J]. Composite Structures,2019,215:298-304. doi: 10.1016/j.compstruct.2019.02.086
    [14] DEYDIER S, GENGEMBRE N, CALMON P, et al. Ultrasonic field computation into multilayered composite materials using a homogenization method based on ray theory[C] // THOMPSON D O. Review of Progress in Quantitative Nondestructive Evaluation. New York: American Institute of Physics, 2005: 1057-1064.
    [15] JOURNIAC S, LEYMARIE N, DOMINGUEZ N, et al. Simulation of ultrasonic inspection of composite using bulk waves: application to curved components[J]. Journal of Physics: Conference Series,2011,269:012022. doi: 10.1088/1742-6596/269/1/012022
    [16] DOMINGUEZ N, REVERDY F. Simulation of ultrasonic testing of composite structures[C] // MAZAL P. 11th European Conference on Non-Destructive Testing. New York: Curran Associates, Inc., 2014: 2998-3007.
    [17] XU N, ZHOU Z G. Numerical simulation and experiment for inspection of corner-shaped components using ultrasonic phased array[J]. NDT and E International,2014,63:28-34. doi: 10.1016/j.ndteint.2014.01.005
    [18] ITO J, BIWA S, HAYASHI T, et al. Ultrasonic wave propagation in the corner section of composite laminate structure: Numerical simulations and experiments[J]. Composite Structures,2015,123:78-87. doi: 10.1016/j.compstruct.2014.12.026
    [19] 苏慧敏, 罗忠兵, 曹欢庆, 等. 提高碳纤维增强树脂基复合材料弹性常数超声表征精度的方法[J]. 复合材料学报, 2016, 33:2510-2516.

    SU H M, LUO Z B, CAO H Q, et al. Improve methods for elastic constants ultrasonic characterization accuracy of carbon fiber reinforced plastics[J]. Acta Materiae Compositae Sinica,2016,33:2510-2516(in Chinese).
    [20] CASTELLANO A, FOTI P, FRADDOSIO A, et al. Mechanical characterization of CFRP composites by ultrasonic immersion tests: Experimental and numerical approaches[J]. Composite Part B: Engineering,2014,66:299-310. doi: 10.1016/j.compositesb.2014.04.024
    [21] ROSE J L. Ultrasonic waves in solid media[M]. New York: Cambridge University Press, 1999: 274-277.
    [22] SU H M, LUO Z B, CAO H Q, et al. Focal law design for phased array ultrasonic testing of CFRP based on finite element modeling[C]. 2016 IEEE Far East NDT New Technology & Application Forum. IEEE, 2016: 1690-1696.
  • 加载中
图(14)
计量
  • 文章访问数:  1389
  • HTML全文浏览量:  799
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 录用日期:  2020-10-12
  • 网络出版日期:  2020-10-16
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回