留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗骨料体积分数对混凝土Ⅱ型断裂参数的影响

陈燕伟 冯吉利 李凤晨 路景淦

陈燕伟, 冯吉利, 李凤晨, 等. 粗骨料体积分数对混凝土Ⅱ型断裂参数的影响[J]. 复合材料学报, 2021, 38(11): 3939-3949. doi: 10.13801/j.cnki.fhclxb.20210115.004
引用本文: 陈燕伟, 冯吉利, 李凤晨, 等. 粗骨料体积分数对混凝土Ⅱ型断裂参数的影响[J]. 复合材料学报, 2021, 38(11): 3939-3949. doi: 10.13801/j.cnki.fhclxb.20210115.004
CHEN Yanwei, FENG Jili, LI Fengchen, et al. Mode Ⅱ fracture parameters of concrete with different coarse aggregate volume fractions[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3939-3949. doi: 10.13801/j.cnki.fhclxb.20210115.004
Citation: CHEN Yanwei, FENG Jili, LI Fengchen, et al. Mode Ⅱ fracture parameters of concrete with different coarse aggregate volume fractions[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3939-3949. doi: 10.13801/j.cnki.fhclxb.20210115.004

粗骨料体积分数对混凝土Ⅱ型断裂参数的影响

doi: 10.13801/j.cnki.fhclxb.20210115.004
基金项目: 国家重点研发计划 (2016YFC0600901);国家自然科学基金 (41172116;U1261212)
详细信息
    通讯作者:

    冯吉利,博士,教授,博士生导师,研究方向为工程力学与地下工程 E-mail:fjl@cumtb.edu.cn

  • 中图分类号: TU528.01

Mode Ⅱ fracture parameters of concrete with different coarse aggregate volume fractions

  • 摘要: 对不同粗骨料体积分数下的混凝土Ⅱ型断裂性能进行了研究。根据最大泥浆厚度(Maximum paste thickness, MPT)理论,给出了断裂韧度KⅡ C与粗骨料体积分数Va之间的经验关系式。通过对含有四种粗骨料体积分数(19%、25%、31%、37%)的无切口试件开展半边加载断裂试验,测得相应的峰值荷载、断裂韧度、能量释放率等断裂参数,并分析了断裂韧带表面的裂纹分布规律。试验结果表明:随着粗骨料体积分数的增加,混凝土的Ⅱ型断裂韧度KⅡ C和临界能量释放率GⅡ C明显增加,名义断裂韧带处的裂纹轮廓线更长、更曲折;各配比试件的开裂模式基本一致,剪切裂纹主要集中在名义断裂韧带区域。同时,利用数字图像相关技术(Digital image correlation, DIC)对试件表面的损伤演化进行分析,结果表明,试件表面的应变局部化能够较好地表征断裂过程区(Fracture process zone, FPZ)的形态特征及演化过程。随着粗骨料体积分数的增加,FPZ的形态更不规则,分支更多。

     

  • 图  1  粗骨料筛分曲线

    Figure  1.  Particle size distribution of the coarse aggregates

    图  2  压力机及DIC布置

    Figure  2.  Test loading device and set-up of the DIC

    图  3  加载布置及散斑图像

    Figure  3.  Testing arrangement and digital image of speckle pattern

    图  4  两端切口单边加载混凝土试件

    Figure  4.  Illustration for the double-edge notched concrete specimen

    图  5  混凝土试件C37-09的原始和修正荷载-位移曲线

    Figure  5.  Original and corrected load-displacement curves of C37-09 concrete specimen

    图  6  混凝土试件C37-09剪切断裂过程

    Figure  6.  Shear process of C37-09 concrete specimen

    图  7  含有不同骨料体积分数的混凝土试件的荷载-位移曲线

    Figure  7.  Load-displacement curves of the concrete specimens with different volume fractions of aggregate

    图  8  混凝土KⅡ CGⅡ C随粗骨料体积分数变化的关系

    Figure  8.  KⅡ C and GⅡ C of concrete with different volume fractions of coarse aggregate

    图  9  无切口混凝土试件的断裂路径

    Figure  9.  Crack paths of non-notched concrete specimens

    图  10  含有不同骨料体积分数的混凝土试件的剪切裂纹形态

    Figure  10.  Fracture patterns for concrete specimens with different volume fractions of coarse aggregate

    图  11  混凝土骨料充填示意图

    Figure  11.  Aggregate filling schematic in concrete

    图  12  混凝土KⅡ C随最大泥浆厚度BMPT变化的关系

    Figure  12.  Relationship between KⅡ C and maximum paste thickness BMPT of concrete

    图  13  混凝土试件C37-09表面水平位移演化

    Figure  13.  Evolution of x-displacement of concrete specimen C37-09

    图  14  混凝土试件C31-08表面剪应变演化

    Figure  14.  Evolution of shear strain of concrete specimen C31-08

    图  15  含有不同骨料体积分数的混凝土试件FPZ形态

    Figure  15.  Shape of FPZ for specimens with different volume fractions of coarse aggregate

    表  1  水泥组成

    Table  1.   Composition of cement

    Chemical composition/wt%
    SiO2 Fe2O3 Al2O3 CaO MgO Na2O K2O SO3
    22.27 2.95 6.37 60.23 4.52 0.13 0.52 2.51
    Mineral composition/wt%
    3CaO·Al2O3 3CaO·SiO2 2CaO·SiO2 4CaO·Al2O3·Fe2O3
    6.9 49.58 28.13 8.62
    下载: 导出CSV

    表  2  水泥力学性质

    Table  2.   Physical properties of cement

    Loss on ignition/%Specific surface area /(m2·kg−1)fc/MPaft/MPaSetting time/min
    2.96 329 3d 28d 3d 28d Initial Final
    23.5 50.3 5.6 8.8 196 258
    Notes:fc is the compressive strength; ft is the tensile strength.
    下载: 导出CSV

    表  3  混凝土配合比

    Table  3.   Compositions of concretes

    GroupSpecimenCement/
    (kg·m−3)
    Sand/
    (kg·m−3)
    Coarse aggregate/
    (kg·m−3)
    Limestone powder/
    (kg·m−3)
    Water/
    (kg·m−3)
    Superplasticizer/
    (kg·m−3)
    Va/%
    C19 C19-01—C19-10 490 1 167 500 96 179.3 5 19
    C25 C25-01—C25-10 490 1 000 667 96 179.3 5.5 25
    C31 C31-01—C31-10 490 834 833 96 179.3 6.1 31
    C37 C37-01—C37-10 490 667 1 000 96 179.3 7.4 37
    Note:Va—Volume fraction of coarse aggregate.
    下载: 导出CSV

    表  4  含有不同骨料体积分数的混凝土断裂参数

    Table  4.   Fracture parameters of concretes with different volume fractions of aggregate measured from experimental tests

    Va/%fc/MPaft/MPaE/GPaKⅡ C/(MPa·m1/2)GⅡ C/(N·m−1)
    19 44.79 3.80 33.23 2.21 146.98
    25 51.96 3.59 32.30 2.91 262.17
    31 50.08 4.41 34.01 3.17 295.47
    37 58.36 4.85 35.26 3.41 329.78
    Notes:E is the modulus of elasticity; KⅡ C is the mode Ⅱ fracture toughness; GⅡ C is the mode Ⅱ critical energy release rate.
    下载: 导出CSV
  • [1] AKCAY B, AGAR-OZBEK A S, BAYRAMOV F, et al. Interpretation of aggregate volume fraction effects on fracture behavior of concrete[J]. Construction & Building Materials,2012,28(1):437-443.
    [2] CHEN Bing, LIU Juanyu. Effect of aggregate on the fracture behavior of high strength concrete[J]. Construction & Building Materials,2004,18:585-590. doi: 10.1016/j.conbuildmat.2004.04.013
    [3] 韩宇栋, 张君, 高原. 粗骨料体积含量对混凝土断裂参数的影响[J]. 工程力学, 2013(3):201-207.

    HAN Yudong, ZHANG Jun, GAO Yuan. Effect of coarse aggregate content on fracture parameters of concrete[J]. Engineering Mechanics,2013(3):201-207(in Chinese).
    [4] BEYGI M H A, KAZEMI M T, NIKBIN I M, et al. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete[J]. Cement & Concrete Research,2014,66:75-90. doi: 10.1016/j.cemconres.2014.06.008
    [5] ALYHYJA W S, DHAHEER M S A, AL-RUBAYE M M, et al. Influence of mix composition and strength on the fracture properties of self-compacting concrete[J]. Construction and Building Materials,2016,110:312-322. doi: 10.1016/j.conbuildmat.2016.02.037
    [6] RAO Q H, SUN Z Q, STEPHANSSON O, et al. Shear fracture (Mode Ⅱ) of brittle rock[J]. International Journal of Rock Mechanics & Mining Sciences,2003,40(3):355-375.
    [7] IOSIPESCU N. New accurate procedure for single shear testing of metals[J]. Journal of Materials,1967,2(3):537-566.
    [8] BAZANT Z P, PFEIFFER P A. Shear fracture tests of concrete[J]. Materials and Structures,1986,19(110):111-121.
    [9] DAVIES J. Numerical and experimental study of development of fracture path under mixed mode loading//VAN MIER J G M, ROTS J G, BAKKER A. Fracture processes in concrete, rock and ceramics[M]. London: E. &F. N. Spon, 1991: 717-726.
    [10] DAVIES J, YIM C W A, MORGAN T G, et al. Determination of fracture parameters of a punch-through shear specimen[J]. International Journal of Cement Composites and Lightweight Concrete,1988,10(1):33-41.
    [11] PRAKASH D, RAGHUPRASAD B K, DESAI V B. Mode-Ⅱ fracture of cementitious materials—Part I: Studies on specimens of some new geometries[J]. Journal of Structural Engineering,1999,26(1):11-18.
    [12] XU S, REINHARDT H W, GAPPOEV M. Mode Ⅱ fracture testing method for highly orthotropic materials like wood[J]. International Journal of Fracture,1995,75(3):185-214.
    [13] REINHARDT H W, OZBOLT J, XU S, et al. Shear of structural concrete members and pure mode Ⅱ testing[J]. Advanced Cement Based Materials,1997,5:75-85. doi: 10.1016/S1065-7355(96)00003-X
    [14] REINHARDT H W, XU S. Experimental determination of KⅡ C of normal strength concrete[J]. Materials and Structures,1998,31:296-302. doi: 10.1007/BF02480670
    [15] REINHARDT H W, XU S. A practical testing approach to determine mode Ⅱ fracture energy GⅡ F for concrete[J]. International Journal of Fracture,2000,105(2):107-125. doi: 10.1023/A:1007649004465
    [16] RAO T D G, KUMAR C N S. Fracture parameters of high-strength concrete-mode Ⅱ testing[J]. Magazine of Concrete Research,2010,62(3):157-162. doi: 10.1680/macr.2010.62.3.157
    [17] KUMAR C N S, RAO T D G. An empirical formula for mode-Ⅱ fracture energy of concrete[J]. KSCE Journal of Civil Engineering,2015,19(3):689-697. doi: 10.1007/s12205-014-1148-0
    [18] 高洪波, 徐世烺, 吴智敏, 等. 混凝土断裂韧度KⅡ C的试验研究[J]. 水力发电学报, 2006(5):68-73. doi: 10.3969/j.issn.1003-1243.2006.05.015

    GAO Hongbo, XU Shilang, WU Zhimin, et al. Experimental study on fracture toughness KⅡ C of concrete[J]. Journal of Hydroelectric Engineering,2006(5):68-73(in Chinese). doi: 10.3969/j.issn.1003-1243.2006.05.015
    [19] 覃茜, 徐千军. 成层混凝土的剪切强度和Ⅱ型断裂韧度[J]. 工程力学, 2019(9):188-196.

    QIN Xi, XU Qianjun. The shear strength and mode Ⅱ fracture toughness of layered concrete[J]. Engineering Mechanics,2019(9):188-196(in Chinese).
    [20] 徐世烺, 喻常雄, 李庆华. 混凝土大坝接缝灌浆的剪切断裂过程及其断裂韧度测定[J]. 水利学报, 2007, 38(3):300-305.

    XU Shilang, YU Changxiong, LI Qinghua. Experimental study on shear fracture process and mode Ⅱ fracture toughness[J]. Journal of Hydraulic Engineering,2007,38(3):300-305(in Chinese).
    [21] 邓爱民, 苟联盟, 徐道远. 2种Ⅱ型混凝土试件断裂韧度KⅡ C值的比较研究[J]. 防灾减灾工程学报, 2013(2):190-194.

    DENG Aimin, GOU Lianmeng, XU Daoyuan. Comparative research on fracture toughness KⅡ C of two types of mode Ⅱ concrete specimens[J]. Journal of Disaster Prevention and Mitigation Eengineering,2013(2):190-194(in Chinese).
    [22] 高洪波. 混凝土Ⅰ型、Ⅱ型断裂参数确定的研究[D]. 大连: 大连理工大学, 2008.

    GAO Hongbo. Study on the determination of mode I and mode Ⅱ fracture parameters for concrete[D]. Dalian: Dalian University of Technology, 2008(in Chinese).
    [23] 徐世烺, 赵艳华. 混凝土Ⅱ型断裂与破坏过程的三维非线性有限元数值模拟[J]. 水力发电学报, 2004, 23(5):15-21. doi: 10.3969/j.issn.1003-1243.2004.05.004

    XU Shilang, ZHAO Yanhua. Numerical simulation of mode Ⅱ fracture and failure processes in concrete by 3-dimensional nonlinear FEM[J]. Journal of Hydroelectric Engineering,2004,23(5):15-21(in Chinese). doi: 10.3969/j.issn.1003-1243.2004.05.004
    [24] 李庆华, 张逸风, 徐世烺, 等. 喷射UHTCC与混 凝土界面的Ⅱ型断裂试验研究[J]. 水利学报, 2018, 49(7):831-839.

    LI Qinghua, ZHANG Yifeng, XU Shilang, et al. Experimental study on mode Ⅱ fracture of interface between the UHTCC and concrete[J]. Journal of Hydraulic Engineering,2018,49(7):831-839(in Chinese).
    [25] LI Guodong, YU Jiangjiang, CAO Peng, et al. Experimental and numerical investigation on Ⅰ-Ⅱ mixed-mode fracture of concrete based on the Monte Carlo random aggregate distribution[J]. Construction & Building Materials,2018,194:523-534.
    [26] STRUBLE L, SKALNY J, MINDESS S. A review of the cement-aggregate bond[J]. Cement & Concrete Research,1980,10(2):277-286.
    [27] TRENDE U, BÜYÜKÖZTÜRK O. Size effect and influence of aggregate roughness in interface fracture of concrete composites[J]. ACI Materials Journal,1998,95(4):331-338.
    [28] MYONG L K, BUYUKOZTURK O, OUMERA A. Fracture analysis of mortar-aggregate interfaces in concrete[J]. Journal of Engineering Mechanics,1992,118(10):2031-2046. doi: 10.1061/(ASCE)0733-9399(1992)118:10(2031)
    [29] LARRARD F D, BELLOC A. Influence of aggregate on the compressive strength of normal and high-strength concrete[J]. ACI Materials Journal,1997,94(5):417-426.
    [30] WU Zhimin, RONG Hua, ZHENG Jianjun, et al. An experimental investigation on the FPZ properties in concrete using digital image correlation technique[J]. Engineering Fracture Mechanics,2011,78(17):2978-2990. doi: 10.1016/j.engfracmech.2011.08.016
    [31] AL-SHAYEA N. Comparing reservoir and outcrop specimens for mixed mode Ⅰ-Ⅱ fracture toughness of a limestone rock formation at various conditions[J]. Rock Mechanics & Rock Engineering,2002,35(4):271-297.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  931
  • HTML全文浏览量:  512
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-18
  • 录用日期:  2021-01-04
  • 网络出版日期:  2021-01-15
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回