留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低轴压比聚乙烯醇纤维增强水泥基复合材料中长柱抗震性能试验

王玉清 解春燕 刘曙光 徐向阳 孟苏牙拉吐

王玉清, 解春燕, 刘曙光, 等. 低轴压比聚乙烯醇纤维增强水泥基复合材料中长柱抗震性能试验[J]. 复合材料学报, 2021, 38(12): 4337-4348. doi: 10.13801/j.cnki.fhclxb.20210310.001
引用本文: 王玉清, 解春燕, 刘曙光, 等. 低轴压比聚乙烯醇纤维增强水泥基复合材料中长柱抗震性能试验[J]. 复合材料学报, 2021, 38(12): 4337-4348. doi: 10.13801/j.cnki.fhclxb.20210310.001
WANG Yuqing, XIE Chunyan, LIU Shuguang, et al. Experimental study on seismic performance of polyvinyl alcohol fiber reinforced cementitious composite medium-length columns with low axial pressure ratio[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4337-4348. doi: 10.13801/j.cnki.fhclxb.20210310.001
Citation: WANG Yuqing, XIE Chunyan, LIU Shuguang, et al. Experimental study on seismic performance of polyvinyl alcohol fiber reinforced cementitious composite medium-length columns with low axial pressure ratio[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4337-4348. doi: 10.13801/j.cnki.fhclxb.20210310.001

低轴压比聚乙烯醇纤维增强水泥基复合材料中长柱抗震性能试验

doi: 10.13801/j.cnki.fhclxb.20210310.001
基金项目: 国家自然科学基金(51768051);内蒙古自治区科技创新引导项目(KCBJ2018016);内蒙古自治区自然科学基金(2018LH05040)
详细信息
    通讯作者:

    刘曙光,硕士,教授,研究方向为高性能纤维水泥基复合材料的工程应用 E-mail:liusg6011@126.com

  • 中图分类号: TU525.9

Experimental study on seismic performance of polyvinyl alcohol fiber reinforced cementitious composite medium-length columns with low axial pressure ratio

  • 摘要: 已有对聚乙烯醇纤维增强水泥基复合材料(PVA/C)柱抗震性能的研究大多针对短柱,且PVA/C一般只在节点及其邻近部位局部设置。基于此,本文对低轴压比且沿柱全高设置的PVA/C中长柱进行低周反复荷载试验,变化参数为纤维体积分数ρf和体积配箍率ρv。通过试验,得出以下结论:所有试件均发生弯曲破坏;当ρfρv分别在试验设计范围内增大时,试件的裂缝控制能力、延性、截面转动能力及耗能能力均提高,刚度退化及承载力衰减速度减小;ρf的增大可较大程度提高试件开裂荷载,而对峰值荷载影响较小;ρf由0 vol%提高到2 vol%,位移延性系数、耗能比及开裂荷载分别提高52.9%、112.3%和51.1%;掺加适量纤维后,即使降低配箍率,试件也可保持良好的抗震性能和裂缝形态。根据本文试验数据并收集其他相关文献试验数据,拟合得出位移延性系数与ρfρv之间的关系式。最后总结了各类PVA/C柱抗震性能差异。

     

  • 图  1  聚乙烯醇纤维增强水泥基复合材料(PVA/C)试件设计及配筋图

    Figure  1.  Polyvinyl alcohol fiber reinforced cementitious composite (PVA/C) specimen design and reinforcement

    图  2  加载装置示意图

    Figure  2.  Loading device schematic

    1—Reaction wall; 2—Positive electrode method; 3—Sliding axle; 4—Vertical loading apparatus; 5—Level sensor; 6—Anchor bolt; 7—Steel plate

    图  3  钢筋应变片

    Figure  3.  Strain gauges of rebar

    图  4  加载制度

    Figure  4.  Loading system

    图  5  PVA/C试件破坏形态

    Figure  5.  Failure patterns of PVA/C specimens

    图  6  PVA/C试件滞回曲线

    Figure  6.  Hysteretic loops of PVA/C specimens

    图  7  PVA/C试件骨架曲线

    Figure  7.  Skeleton curves of PVA/C specimens

    图  8  PVA/C试件曲率

    Figure  8.  Curvature of PVA/C specimens

    图  9  等效粘滞阻尼系数${\zeta _{\rm{eq}}}$计算面积

    Figure  9.  Calculated area of equivalent viscous damping coefficient ${{\zeta }_{\rm{eq}}}$

    图  10  各PVA/C试件${{\zeta }_{\rm{eq}}}$

    Figure  10.  ${\zeta _{\rm{eq}}}$ of PVA/C specimens

    图  11  PVA/C试件${\zeta _{\rm{eq}}}$${{\varDelta / \varDelta }_{\rm{y}}}$的关系

    Figure  11.  Relationship between ${\zeta _{\rm{eq}}}$ and ${{\varDelta / \varDelta }_{\rm{y}}}$ of PVA/C specimens

    图  12  PVA/C总耗能与耗能比

    Figure  12.  Total energy consumption and energy consumption ratio of PVA/C

    图  13  PVA/C刚度退化

    Figure  13.  Stiffness degradation of PVA/C

    表  1  试验工况

    Table  1.   Test conditions

    SpecimenFiber volume
    fraction
    $ \rho _{\rm{f}} $/vol%
    Designed axial
    compression
    ratio n
    Text axial
    compression ratio nt
    Shear
    span
    ratio
    RebarStirrupStirrup volume
    ratio $ \rho _{\rm{v}} $/%
    0vol%PVA/C-70 0 0.3 0.179 5.5 412 Φ8@70 1.74
    1vol%PVA/C-70 1.0 0.3 0.179 5.5 412 Φ8@70 1.74
    2vol%PVA/C-70 2.0 0.3 0.179 5.5 412 Φ8@70 1.74
    1vol%PVA/C-100 1.0 0.3 0.179 5.5 412 Φ8@100 1.22
    1vol%PVA/C-130 1.0 0.3 0.179 5.5 412 Φ8@130 0.94
    Note: PVA/C—Polyvinyl alcohol fiber reinforced cementitious composite.
    下载: 导出CSV

    表  2  PVA/C配合比

    Table  2.   Mix proportion of PVA/C

    CementFly ashWaterSandThickener/%Defoamer/%Plasticizer/%Fiber content/vol%
    0.80.20.50.80.0510.10, 1, 2
    Notes: Fiber content—Volume fraction, other materials are mass ratio; Water/cement mass ratio is 0.5.
    下载: 导出CSV

    表  3  PVA纤维性能

    Table  3.   Properties of PVA fiber

    Fineness/dtexDensity/(g·cm−3)Diameter/mmElongation/%Length/mmTensile strength/MPaElastic modulus/GPa
    151.30.04612160040
    下载: 导出CSV

    表  4  钢筋受拉力学性能参数

    Table  4.   Tensile mechanical properties of rebar

    Steel gradeDiameter/mmYield strength/MPaUltimate strength/MPaElongation after fracture/%
    HRB4001244263525.0
    1644964023.0
    2045064022.5
    下载: 导出CSV

    表  5  PVA/C材料力学性能

    Table  5.   Mechanical properties of PVA/C

    Fiber content/vol%fcu/MPafc/MPaft/MPa
    0 46.63 42.66 2.25
    1 46.31 41.18 4.70
    2 46.12 40.81 5.08
    Notes: fcu—Cube crushing strength; fc—Prism compressive strength; ft—Axial tensile strength.
    下载: 导出CSV

    表  6  PVA/C试件特征值

    Table  6.   Characteristic values of PVA/C specimens

    SpecimenLoading directionCracking pointYield pointPeak pointUltimate point
    Pcr/kN$\varDelta _{\rm{cr}}$/mmPy/kN$\varDelta_{\rm{y}}$/mmPm/kN$\varDelta_{\rm{m}}$/mmPu/mm$\varDelta_{\rm{u}}$/mm
    0vol%PVA/C-70 Positive direction 6.60 1.86 24.20 16.43 29.40 22.24 14.95 51.00
    Negative direction −11.2 −0.29 −38.30 −14.83 −43.40 −23.45 −36.90 −50.54
    1vol%PVA/C-70 Positive direction 17.60 3.41 26.70 11.38 31.70 22.7 13.66 59.04
    Negative direction −9.60 −0.84 −37.70 −14.44 −45.40 −24.31 −38.60 −60.39
    2vol%PVA/C-70 Positive direction 17.50 3.40 25.50 11.31 31.10 25.19 18.40 68.92
    Negative direction −9.40 −1.43 −33.70 −18.20 −41.00 −27.06 −34.90 −77.73
    1vol%PVA/C-100 Positive direction 11.80 2.57 26.20 10.40 30.60 22.06 17.36 46.06
    Negative direction −11.80 −1.56 −38.1 −12.44 −45.10 −23.12 −38.30 −44.15
    1vol%PVA/C-130 Positive direction 10.00 2.74 25.40 11.89 29.10 18.65 16.06 43.00
    Negative direction −13.30 −1.44 −32.20 −10.16 −39.50 −25.39 −33.60 −41.04
    Notes: Pcr—Column cracking load; $\varDelta _{\rm{cr}}$—Column cracking displacement; Py—Yield load of longitudinal reinforcement; $\varDelta_{\rm{y}}$—Specimen yield displacement; Pm—Peak load; $\varDelta_{\rm{m}}$—Displacement when the column reached peak load; Pu—Loads of specimens in both positive and negative directions decreased to 85% of peak load; $\varDelta_{\rm{u}}$—Displacement when the column reached ultimate load.
    下载: 导出CSV

    表  7  PVA/C试件位移参数汇总

    Table  7.   Summary of displacement parameters of PVA/C specimens

    SpecimenYield displacement $ {\varDelta}_{\rm{y}} $/mmUltimate displacement $ {\varDelta}_{\rm{u}} $/mmDisplacement ductility coefficient ${{\mu }}$Elastic-plastic limit displacement angle $\mathop \theta \nolimits_{\rm{u}} $
    Absolute valueRelative valueAbsolute valueRelative value
    0vol%PVA/C-70 15.63 50.77 3.25 1 1/22 1
    1vol%PVA/C-70 12.91 59.72 4.63 1.42 1/19 1.16
    2vol%PVA/C-70 14.76 73.33 4.97 1.53 1/15 1.47
    1vol%PVA/C-100 11.42 45.11 3.95 1.22 1/24 0.92
    1vol%PVA/C-130 11.03 42.02 3.81 1.17 1/26 0.85
    下载: 导出CSV

    表  8  PVA/C位移延性系数试验结果与计算结果对比

    Table  8.   Comparison between test results and calculated values of displacement ductility coefficient of PVA/C

    SpecimenTest value ${{\mu }_{\rm{e}}}$Calculated value ${{\mu }_{\rm{c}}}$${{{{\mu }_{\rm{c}}}} / {{{\mu }_{\rm{e}}}}}$
    1vol%PVA/C-70 4.63 4.63 1.00
    2vol%PVA/C-70 4.97 5.10 0.97
    1vol%PVA/C-100 3.95 2.60 1.52
    1vol%PVA/C-130 3.81 4.39 0.87
    R/FRC3[10] 3.44 3.39 1.01
    R/FRC4[10] 3.35 3.39 0.99
    R/FRC5[10] 3.58 3.21 1.11
    R/FRC6[10] 3.48 3.21 1.08
    S1[19] 3.11 3.80 0.82
    S3[19] 3.71 3.80 0.98
    S6[20] 6.09 5.54 1.09
    S7[20] 5.15 5.39 0.96
    下载: 导出CSV

    表  9  PVA/C曲率计算值

    Table  9.   Curvature calculation values of PVA/C

    SpecimenYield curvature $\mathop {\varphi }\nolimits_{\rm{y}} $Relative yield curvaturePeak curvature $\mathop \varphi \nolimits_{\rm{p}} $Relative peak curvature
    0vol%PVA/C-70 2.71×10−5 1.00 3.43×10−5 1.00
    1vol%PVA/C-70 3.05×10−5 1.13 4.68×10−5 1.36
    2vol%PVA/C-70 3.26×10−5 1.20 4.89×10−5 1.43
    1vol%PVA/C-100 2.99×10−5 1.10 4.36×10−5 1.27
    1vol%PVA/C-130 2.39×10−5 0.88 3.36×10−5 0.98
    下载: 导出CSV
  • [1] HANIF F, KANAKUBO T. Shear performance of fiber-reinforced cementitious composites beam-column joint using various fibers[J]. Journal of the Civil Engineering Forum,2017,9(3):383.
    [2] MU Y, ANDO M, YASOJIMA A, et al. Influence of fiber orientation on structural performance of beam-column joints using PVA FRCC[C]//Strain-Hardening Cement-Based Composites. SHCC4, 2017.
    [3] MU Y, YASOJIMA A, KANAJUBO T. Shear performance of FRCC beam-column joints using various polymer fibers[J]. Journal of Engineering and Architecture,2019,13(9):562-571.
    [4] PAN J, MO C, XU L, et al. Seismic behaviors of steel reinforced ECC/RC composite columns under low-cyclic loading[J]. Journal of Southeast University (English Edition),2017,33(1):70-78.
    [5] 梁兴文, 康力, 车佳玲, 等. 局部采用纤维增强混凝土柱的抗震性能试验与分析[J]. 工程力学, 2013, 30(9):243-250.

    LIANG Xingwen, KANG Li, CHE Jialing, et al. Experiments and analyses of seismic behavior of columnswith fiber-reinforced concrete in bottom region[J]. Engineering Mechanics,2013,30(9):243-250(in Chinese).
    [6] 梁兴文, 王英俊, 邢朋涛, 等. 局部采用纤维增强混凝土梁柱节点抗震性能试验研究[J]. 工程力学, 2016, 33(4):67-76.

    LIANG Xingwen, WANG Yingjun, XING Pengtao, et al. Experimental study on seismic performance of beam-column joints with fiber-reinforced concrete in joint core and plastic hinge zone of beam and column end[J]. Engineering Mechanics,2016,33(4):67-76(in Chinese).
    [7] 路建华, 张秀芳, 徐世烺. 超高韧性水泥基复合材料梁柱节点的低周往复试验研究[J]. 水利学报, 2012, 43(S1):135-144.

    LU Jianhua, ZHANG Xiufang, XU Shilang. Cyclic-loading experiment for investigating seismic performance of beam-column connections with high toughness cementitious composites[J]. Journal of Hydraulic Engineering,2012,43(S1):135-144(in Chinese).
    [8] 邓明科, 张辉, 梁兴文, 等. 高延性纤维混凝土短柱抗震性能试验研究[J]. 建筑结构学报, 2015, 36(12):62-69.

    DENG Mingke, ZHANG Hui, LIANG Xingwen, et al. Experimental study on seismic behavior of high ductile fiber reinforced concrete short column[J]. Journal of Building Structures,2015,36(12):62-69(in Chinese).
    [9] 姜睿, 徐世烺, 贾金青. 高轴压比PVA纤维超高强混凝土短柱延性的试验研究[J]. 土木工程学报, 2007(8):54-60.

    JIANG Rui, XU Shilang, JIA Jinqing. An experimental study on the seismic ductility of PVA fiber super-high-strength concrete columns with high axial load ratios[J]. China Civil Engineering Journal,2007(8):54-60(in Chinese).
    [10] 韩建平, 刘文林. 高轴压比配筋PVA纤维增强混凝土柱抗震性能试验研究[J]. 工程力学, 2017, 34(9):193-201.

    HAN Jianping, LIU Wenlin. Experimental investigation on seismic behavior of PVA fiber reinforced concrete columns with high axial compression ratios[J]. Engineering Mechanics,2017,34(9):193-201(in Chinese).
    [11] 汪梦甫, 张旭. 高轴压比下PVA-ECC柱抗震性能试验研究[J]. 湖南大学学报(自然科学版), 2017, 44(5):1-9.

    WANG Mengfu, ZHANG Xu. Experimental study on seismic performance of PVA-ECC columns with high axial load ratio[J]. Journal of Hunan University (Natural Sciences),2017,44(5):1-9(in Chinese).
    [12] 邓明科, 方超, 代洁, 等. 高延性纤维混凝土低矮剪力墙抗震性能试验研究[J]. 建筑结构, 2017, 47(2):57-63.

    DENG Mingke, FANG Chao, DAI Jie, et al. Experimental study on seismic behavior of high ductile fiber reinforced concrete low-rise shear walls[J]. Building Structure,2017,47(2):57-63(in Chinese).
    [13] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of People's Republic of China. Code for seismic design of buildings: GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).
    [14] 陕西省建筑科学研究院. 建筑砂浆基本性能试验方法: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Shaanxi Provincial Building Research Institute. Standard for test method of performance on building mortar: JGJ/T 70—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [15] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2002.

    Ministry of Housing and Urban-Rural Development of People's Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2002(in Chinese).
    [16] 中华人民共和国住房和城乡建设部. 建筑抗震试验方法规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of People's Republic of China. Specification of testing methods for earthquake resistant building: JGJ/T 101—2015[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
    [17] 徐浩然. 钢-聚丙烯混杂纤维混凝土柱抗震性能研究[D]. 武汉: 武汉大学, 2013.

    XU Haoran. Seismic performance of steel-polypropylene fiber reinforced concrete columns[D]. Wuhan: Wuhan University, 2013(in Chinese).
    [18] 李凤兰, 黄承逵, 温世臣, 等. 低周反复荷载下钢纤维高强混凝土柱延性试验研究[J]. 工程力学, 2005(6):159-164.

    LI Fenglan, HUANG Chengkui, WEN Shichen, et al. Ductility of steel fiber reinforced high-strength concrete columns under cyclic loading[J]. Engineering Mechanics,2005(6):159-164(in Chinese).
    [19] 陈梦成, 陈利平, 袁方. 复合筋增强ECC混凝土组合柱抗震性能研究[J]. 混凝土, 2020(4):1-4, 8.

    CHEN Mengcheng, CHEN Liping, YUAN Fang. Seismic performance of reinforced with hybrid FRP and steels ECC concrete composite column[J]. Concrete,2020(4):1-4, 8(in Chinese).
    [20] LI Xu, PAN Jinlong, CHEN Junhan. Mechanical behavior of ECC and ECC/RC composite columns under reversed cyclic loading[J]. Journal of Materials in Civil Engineering,2017,29(9):04017097. doi: 10.1061/(ASCE)MT.1943-5533.0001950
    [21] SHI Q X, WANG P, TIAN Y, et al. Experimental study on seismic behavior of high-strength concrete columns with high-strength stirrups[J]. Engineering Mechanics, 2014, 31(8):161-167.
    [22] 赵国藩, 周氐. 高等钢筋混凝土结构学[M]. 北京: 机械工业出版社, 2005.

    ZHAO Guofan, ZHOU Di. Advanced reinforced concrete structures[M]. Beijing: Published By Mechanical Indu-stries, 2005(in Chinese).
    [23] 邓明科. 高性能混凝土剪力墙基于性能的抗震设计理论与试验研究[D]. 西安: 西安建筑科技大学, 2006.

    DENG Mingke. Theory and experimental reseach on performance-based seismic design of high performance concrete shear wall[D]. Xi’an: Xi’an University of Architecture and Technology, 2006(in Chinese).
    [24] 李建委, 李汉春, 田承昊. 低周反复荷载作用下钢筋混凝土异形柱框架的延性分析[J]. 世界地震工程, 2016, 32(3):53-57.

    LI Jianwei, LI Hanchun, TIAN Chenghao. Ductility analysis of reinforced concrete special-shaped column frame under low reversed cyclic loading[J]. World Earthquake Engineering,2016,32(3):53-57(in Chinese).
    [25] 李忠献. 工程结构试验理论与技术[M]. 天津: 天津大学出版社, 2004.

    LI Zhongxian. Theory and technique of engineering structure experiments[M]. Tianjin: Tianjin University Press, 2004(in Chinese).
    [26] 姜睿. 超高强混凝土组合柱抗震性能的试验研究[D]. 大连: 大连理工大学, 2007.

    JIANG Rui. Experimental study on seismic performance of reinforced super-high-strength concrete composite columns[D]. Dalian: Dalian University of Technology, 2007(in Chinese).
    [27] 吴畅. 考虑剪切效应的RECC柱及框架结构抗震性能研究[D]. 南京: 东南大学, 2016.

    WU Chang. Study on seismic behavior of RECC col-umns and frames considering shear effect[D]. Nanjing: Southeast University, 2016(in Chinese).
  • 加载中
图(13) / 表(9)
计量
  • 文章访问数:  804
  • HTML全文浏览量:  243
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 录用日期:  2021-03-01
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回