留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能

汪雨微 欧宝立 鲁忆 邢赟 罗子盈 支倩 曹新秀

汪雨微, 欧宝立, 鲁忆, 等. 功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能[J]. 复合材料学报, 2021, 38(12): 3971-3985. doi: 10.13801/j.cnki.fhclxb.20210309.001
引用本文: 汪雨微, 欧宝立, 鲁忆, 等. 功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能[J]. 复合材料学报, 2021, 38(12): 3971-3985. doi: 10.13801/j.cnki.fhclxb.20210309.001
WANG Yuwei, OU Baoli, LU Yi, et al. Preparation and properties of functionalized nano-TiO2/epoxy resin superhydrophobic anticorrosive composite coating[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 3971-3985. doi: 10.13801/j.cnki.fhclxb.20210309.001
Citation: WANG Yuwei, OU Baoli, LU Yi, et al. Preparation and properties of functionalized nano-TiO2/epoxy resin superhydrophobic anticorrosive composite coating[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 3971-3985. doi: 10.13801/j.cnki.fhclxb.20210309.001

功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能

doi: 10.13801/j.cnki.fhclxb.20210309.001
基金项目: 国家自然科学基金面上项目(51775183);湖南省自然科学基金项目(2021JJ30259);清华大学摩擦学国家重点实验室开放基金项目(SKLTKF17B14);国家级大学生创新创业项目(S202010534001S);湖南省普通高等学校教学改革研究项目(湘教通[2019]291号);湖南省大学生创新创业项目(S202010534033)
详细信息
    通讯作者:

    欧宝立,博士,教授,博士生导师,研究方向为自修复、防腐、超疏水、复合材料  E-mail:B.Ou@hnust.edu.cn

  • 中图分类号: TQ174.75

Preparation and properties of functionalized nano-TiO2/epoxy resin superhydrophobic anticorrosive composite coating

  • 摘要: 超疏水材料在金属防腐领域具备巨大的潜在应用前景。为得到疏水性能及防腐性能俱优的纳米TiO2/环氧树脂复合涂层材料,首先以三甲氧基十七氟癸基硅烷和γ-氨丙基三乙氧基硅烷(KH550)对纳米TiO2表面功能化;以全氟辛基甲基丙烯酸酯对固化剂二乙烯三氨(DETA)进行氟化;最后通过一步共混法和两步喷涂法分别制备出两种复合涂层。利用FTIR、XPS、1HNMR分析氟化固化剂(F-DETA)和氟化纳米TiO2(f-TiO2)的物相组成和组织结构。接触角测试仪和静置实验表明,当三甲氧基十七氟癸基硅烷和γ-氨丙基三乙氧基硅烷的摩尔比为1∶15时f-TiO2的性能最佳,所制备的复合涂层接触角达到164.9°。SEM表征结果显示通过两步法制备的f-TiO2/环氧树脂复合涂层具备更均匀的粗糙表面、涂层内部孔隙率较低且环氧树脂层与f-TiO2层具备梯度结构。摩擦实验证明两步法制备的f-TiO2/环氧树脂复合涂层的超疏水性具备较好的机械稳定性。Tafel极化曲线和电化学阻抗谱(EIS)研究表明,通过两步法制备的f-TiO2/环氧树脂复合涂层具有优异的防腐性能,其腐蚀抑制效率高达99.99%。

     

  • 图  1  氟化固化剂(F-DETA)的合成机制

    Figure  1.  Synthesis mechanism of fluorinated curing agent (F-DETA)

    图  2  两种复合涂层的制备流程示意图

    Figure  2.  Schematic diagram of preparation process of two kinds of composite coatings

    图  3  四种不同f-TiO2的FTIR图谱

    Figure  3.  FTIR spectra of four different f-TiO2 samples

    图  4  四种不同f-TiO2的XPS能谱 (a) 和统计图 (b)

    Figure  4.  XPS spectra (a) and statistical diagrams (b) of four f-TiO2 samples

    图  5  四种f-TiO2的接触角

    Figure  5.  Contact angles of four f-TiO2

    图  6  四种f-TiO2添加到环氧树脂并固化的光学照片

    Figure  6.  Optical photos of four kinds of f-TiO2 added to epoxy resin and cured

    图  7  四种f-TiO2的XPS图谱

    Figure  7.  XPS spectra of four f-TiO2

    图  8  F-DETA的FTIR图谱 (a) 和核磁氢谱 (b)

    Figure  8.  FTIR spectrum (a) and HNMR spectrum (b) of F-DETA

    图  9  不同复合材料表面水接触角的变化

    Figure  9.  Variation of water contact angles on surface of different composite coatings

    1—Unmodified DETA (p-DETA)/epoxy CYD-127; 2—F-DETA/epoxy CYD-127; 3—f-TiO2-15-F-DETA/epoxy CYD-127 (B); 4—f-TiO2-15-F-DETA/epoxy CYD-127 (T)

    图  10  磨损实验示意图和f-TiO2-15-F-DETA/epoxy CYD-127 (T)涂层材料的接触角随摩擦距离的关系

    Figure  10.  Schematic diagram of wear experiment and relationship between contact angle of f-TiO2-15-F-DETA/epoxy CYD-127 (T) coating material and friction distance

    图  11  p-DETA/epoxy CYD-127表面 ((a)~(b))、F-DETA/epoxy CYD-127表面 ((c)~(d))、f-TiO2-15-F-DETA/epoxy CYD-127 (B)表面 ((e)~(f))、f-TiO2-15-F-DETA/epoxy CYD-127 (T)表面 ((g)~(h)) 和断面 ((i)~(j)) 的SEM图像

    Figure  11.  SEM images of p-DETA/epoxy CYD-127 surface ((a)-(b)), F-DETA/epoxy CYD-127 surface ((c)-(d)), f-TiO2-15-F-DETA/epoxy CYD-127 (B) surface ((e)-(f)), f-TiO2-15-F-DETA/epoxy CYD-127 (T) surface ((g)-(h)) and cross section ((i)-(j))

    图  12  Q235钢板及分别涂有不同复合涂层的Q235钢板浸泡2 h后的极化曲线

    Figure  12.  Polarization curves of Q235 steel plate and Q235 steel plate coated with different composite coatings after immersion 2 h

    图  13  分别涂有不同复合涂层的Q235钢板在3.5 wt% NaCl溶液中浸泡2天的Nyquist图 ((a)~(b)),Bode-阻抗图(c),Bode-相位图 (d) 和等效电路图 ((e)~(f))

    Figure  13.  Nyquist plot ((a)-(b)), Bode-impedance plot (c), Bode- phase plot (d) and equivalent circuit diagram ((e)-(f)) of different composite coatings respectively immersed in 3.5 wt% NaCl solution for 2 days

    Rs—Solution resistance; Qa—Constant phase of air layer; Ra—Air layer resistance; Qc—Constant phase of coating; Rc—Coating resistance, Qdl—Constant phase of double-layer; Rct—Charge transfer resistance

    图  14  涂有f-TiO2-15-F-DETA/epoxy CYD-127 (T)的Q235钢板在3.5 wt% NaCl溶液中浸泡2、7、14、28天的Nyquist图 (a)、Bode-阻抗图 (b) 和Bode-相位图 (c)

    Figure  14.  Nyquist plot (a), Bode- impedance plot (b) and Bode- phase plot (c) of Q235 steel plates coated with f-TiO2-15-F-DETA/epoxy CYD-127 (T) immersed in 3.5 wt% NaCl solution for 2, 7, 14 and 28 days

    表  1  四种氟化纳米TiO2(f-TiO2)的制备条件

    Table  1.   Preparation conditions of four fluorinated nano TiO2 (f-TiO2) samples

    SampleTiO2/gKH550/g (A)Trimethoxy (1H,1H,2H,2H-
    heptadecafluorodecyl) silane/g (B)
    Ethanol-water
    solution/mL
    Mole ratio
    of A to B
    f-TiO2-1 4 0.44 1.14 100 1∶1
    f-TiO2-3 4 0.66 0.57 100 3∶1
    f-TiO2-7 4 0.77 0.28 100 7∶1
    f-TiO2-15 4 0.83 0.14 100 15∶1
    下载: 导出CSV

    表  2  四种f-TiO2的XPS测试数据

    Table  2.   Data of XPS for four f-TiO2 samples

    SampleAtomic fraction/at%
    FNC
    f-TiO2-1 84.06 1.42 14.52
    f-TiO2-3 75.93 3.29 20.78
    f-TiO2-7 75.71 4.29 19.99
    f-TiO2-15 51.63 9.48 38.89
    下载: 导出CSV

    表  3  Q235钢板及分别涂有不同复合涂层的Q235钢板极化曲线数据

    Table  3.   Polarization curve data of Q235 steel plate and Q235 steel plate coated with different composite coatings respectively

    SampleEcorr/mVicorr/(A·cm−2)ba/(mV·dec−1)bc/(mV·dec−1)vcorr/(mm·y−1)Rp/(kΩ·cm2)IE/%
    Bare −1 010 5.55×10−4 230.89 −145.49 6.45 69.83
    p-DETA/epoxy CYD-127 −766 7.48×10−6 575.28 −641.14 8.70×10−2 1.76×104 98.65
    F-DETA/epoxy CYD-127 −667 3.54×10−6 550.15 −644.71 4.12×10−2 3.64×104 99.36
    f-TiO2−15-F-DETA/epoxy CYD-127 (B) −629 8.24×10−8 306.25 −435.23 9.58×10−4 9.47×105 99.98
    f-TiO2−15-F-DETA/epoxy CYD-127 (T) −321 1.53×10−8 366.54 −527.98 1.78×10−4 6.14×106 99.99
    Notes: Ecorr—Corrosion potential; icorr—Corrosion current density; ba—Anode slope; bc—Cathode slope; vcorr—Corrosion rate; Rp—Polarization resistance; IE—Inhibition efficiency.
    下载: 导出CSV

    表  4  分别涂有不同复合涂层的Q235钢板在3.5 wt% NaCl溶液中浸泡2天的电化学阻抗参数

    Table  4.   Electrochemical impedance parameters of Q235 steel plate coated with different composite coatings respectively immersed in 3.5 wt% NaCl solution for 2 days

    SampleRsQaRaQcRcQdlRct
    Ya/(S·sn cm−2)naYc/(S·sn cm−2)ncYdl/(S·sn cm−2)ndl
    p-DETA/epoxy
    CYD-127
    884.1 6.018×10−10 0.998 3.049×105 3.686×10−6 0.267 1.514×105
    F-DETA/epoxy
    CYD-127
    1301 6.646×10−10 0.999 1.216×106 1.763×10−7 0.766 2.033×105
    ef-TiO2−15-F-DETA/epoxy
    CYD-127 (B)
    2614 9.854×10−10 1 1.654×106 3.259×10−8 0.573 1.571×107 4.737×10−7 0.697 60.38
    f-TiO2−15-F-DETA/epoxy
    CYD-127 (T)
    6159 2.129×10−10 1 5.347×106 1.131×10−8 0.579 9.582×107 2.089×10−9 0.799 4.669×107
    Notes: Y—Proportional factor; n—Adjustable parameter.
    下载: 导出CSV
  • [1] LEI Y, QIU Z, TAN N, et al. Polyaniline/CeO2 nanocompo-sites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution[J]. Progress in Organic Coatings,2020,139:105430. doi: 10.1016/j.porgcoat.2019.105430
    [2] 郭小农, 王丽, 罗永峰, 等. 碳纤维增强复合材料增强铝合金叠层复合材料短柱力学性能[J]. 复合材料学报, 2021, 38(4):1-13.

    GUO X, WANG L, LUO Y F, et al. Mechanical properties of carbon fiber reinforced plastics reinforced aluminum alloy laminated composite stub column[J]. Acta Materiae Compositae Sinica,2021,38(4):1-13(in Chinese).
    [3] SHARIFI G, ATTAR M, RAMEZANZADEH B, et al. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating[J]. Applied Surface Science,2015,345:360-368. doi: 10.1016/j.apsusc.2015.03.148
    [4] CHANDRABHAN V, LUKMAN O, EKEMINI D, et al. Epoxy resins as anticorrosive polymeric materials: A review[J]. Reactive and Functional Polymers,2020,156:104741. doi: 10.1016/j.reactfunctpolym.2020.104741
    [5] SYED J, TANG S, MENG X. Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application[J]. Scientific Reports,2017,7:1-17. doi: 10.1038/s41598-016-0028-x
    [6] HOODA A, GOYAT M, PANDEY J, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings[J]. Progress in Organic Coatings,2020,142:105557. doi: 10.1016/j.porgcoat.2020.105557
    [7] CHEN S, CARROLL D. Synthesis and characterization of truncated triangular silver nanoplates[J]. Nano Letters,2002,2:1003-1007. doi: 10.1021/nl025674h
    [8] PENG C, CHEN Z, TIWARI M. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials,2018,17:355-360. doi: 10.1038/s41563-018-0044-2
    [9] WU B, LYU J, PENG C, et al. Inverse infusion processed hierarchical structure towards superhydrophobic coatings with ultrahigh mechanical robustness[J]. Chemical Engineering Journal,2020,387:124066. doi: 10.1016/j.cej.2020.124066
    [10] GUO L, GU C, FENG J, et al. Hydrophobic epoxy resin coating with ionic liquid conversion pretreatment on magnesium alloy for promoting corrosion resistance[J]. Journal of Materials Science & Technology,2020,37:9-18.
    [11] ATTA A, MOHAMED N, ROSTOM M, et al. New hydrophobic silica nanoparticles capped with petroleum paraffin wax embedded in epoxy networks as multifunctional steel epoxy coatings[J]. Progress in Organic Coatings,2019,128:99-111. doi: 10.1016/j.porgcoat.2018.12.018
    [12] LI M, LIU N, CHEN J, et al. Simple construction based on epoxy-bonded super-hydrophobic anti-corrosion coating[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,95:682-691. doi: 10.1016/j.jtice.2018.10.016
    [13] WEI Y, ZHANG L, KE W. Evaluation of corrosion protection of carbon black filled fusion-bonded epoxy coatings on mild steel during exposure to a quiescent 3% NaCl solution[J]. Corrosion Science,2007,49:287-302. doi: 10.1016/j.corsci.2006.06.018
    [14] HILL D, BARRON A, ALEXANDER S. Comparison of hydrophobicity and durability of functionalized aluminium oxide nanoparticle coatings with magnetite nanoparticles-links between morphology and wettability[J]. Journal of Colloid and Interface Science,2019,555:323-330. doi: 10.1016/j.jcis.2019.07.080
    [15] DONG Y, ZHOU Q. Relationship between ion transport and the failure behavior of epoxy resin coatings[J]. Corrosion Science,2014,78:22-28. doi: 10.1016/j.corsci.2013.08.017
    [16] OU B, LI D, LIU Y. Compatibilizing effect of maleated polypropylene on the mechanical properties of injection molded polypropylene/polyamide 6/functionalized-TiO2 nanocomposites[J]. Composites Science and Technology,2009,69:421-426. doi: 10.1016/j.compscitech.2008.11.010
    [17] OU B, LI D, LIU Y, et al. Functionalized TiO2 nanoparticle containing isocyanate groups[J]. Materials Chemistry and Physics,2012,135:1104-1107. doi: 10.1016/j.matchemphys.2012.06.027
    [18] 欧宝立, 李笃信. 用ATRP方法制备聚苯乙烯/纳米二氧化硅杂化粒子[J]. 中国科学B:化学, 2006, 36(5):393-398.

    OU B L, LI D X. Preparation of well-defined polystyrene/silica hybrid nanoparticles by ATRP[J]. Science in China Series B: Chemistry,2006,36(5):393-398(in Chinese).
    [19] 张立德, 牟季美. 纳米材料和纳米技术[M]. 北京: 科学出版社, 2002: 302.

    ZHANG L D, MOU J M. Nano-materials and nano-technology[M]. Beijing: Science Press, 2002: 302(in Chinese).
    [20] DAS I, DE G. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use[J]. Scientific Reports,2015,5:18503.
    [21] BLOSSRY R. Self-cleaning surfaces-virtual realities[J]. Nature Materials,2003,2:301-306. doi: 10.1038/nmat856
    [22] QI Y, LI K, HU B, et al. The influence of tiny amount fluorine-containing acrylate on kinetics, morphology and properties free-radical/cationic hybrid UV-cured coatings[J]. Progress in Organic Coatings,2017,112:44-50. doi: 10.1016/j.porgcoat.2017.06.026
    [23] UMARFAROOQA M, SHIVAKUMAR P, VEERESH K, et al. Impact of process induced residual stresses on interlaminar fracture toughness in carbon epoxy composites[J]. Composites Part A: Applied Science,2019,127:105652. doi: 10.1016/j.compositesa.2019.105652
    [24] 覃森, 潘亦苏, 罗征志. 涂层中裂纹应力强度因子的计算及裂纹扩展[J]. 重庆工学院学报(自然科学版), 2007, 21(6):11-14.

    TAN S, PAN Y S, LUO Z Z. Calculation of crack stress intensity factors and crack propagation in coating[J]. Journal of Chongqing Institute of Technology (Natural Science Edition),2007,21(6):11-14(in Chinese).
    [25] YEH T, HUANG T, HUANG H, et al. Electrochemical investigations on anticorrosive and electrochromic properties of electroactive polyurea[J]. Polymer Chemistry,2012,3:2209-2216. doi: 10.1039/c2py20061a
    [26] HUANG T, YEH T, HUANG H, et al. Electrochemical investigations of the anticorrosive and electrochromic properties of electroactive polyamide[J]. Electrochimica Acta,2012,63:185-191. doi: 10.1016/j.electacta.2011.12.087
    [27] LIU C, REVILLA R, LIU Z, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel[J]. Corrosion Science,2017,129:82-90. doi: 10.1016/j.corsci.2017.10.001
    [28] YIN X, MU P, WANG Q, et al. Superhydrophobic ZIF-8-based dual-layer coating for enhanced corrosion protection of Mg alloy[J]. ACS Applied Materials & Interfaces,2020,12:35453-35463. doi: 10.1021/acsami.0c09497
    [29] ZHONG J, ZHOU G, HE P, et al. 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide[J]. Carbon,2017,117:421-426. doi: 10.1016/j.carbon.2017.02.102
    [30] TIAN G, ZHANG M, ZHAO Y, et al. High corrosion protection performance of a novel nonfluorinated biomimetic superhydrophobic Zn-Fe coating with echinopsis multiplex-like structure[J]. ACS Applied Materials & Interfaces,2019,11:38205-38217. doi: 10.1021/acsami.9b15088
    [31] MONDAL J, MARQUES A, AARIK L, et al. Development of a thin ceramic-graphene nanolaminate coating for corrosion protection of stainless steel[J]. Corrosion Science,2016,105:161-169. doi: 10.1016/j.corsci.2016.01.013
    [32] QIU S, LI W, ZHENG W, at el. Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution[J]. ACS Applied Materials& Interfaces,2017,9:34294-34304.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  1491
  • HTML全文浏览量:  360
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-12
  • 录用日期:  2021-03-03
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回