留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Kevlar纤维增强复合材料激光-铣削组合加工试验及可行性分析

苏飞 李纯杰 李文毅 郑雷

苏飞, 李纯杰, 李文毅, 等. Kevlar纤维增强复合材料激光-铣削组合加工试验及可行性分析[J]. 复合材料学报, 2021, 38(10): 3553-3563. doi: 10.13801/j.cnki.fhclxb.20210423.001
引用本文: 苏飞, 李纯杰, 李文毅, 等. Kevlar纤维增强复合材料激光-铣削组合加工试验及可行性分析[J]. 复合材料学报, 2021, 38(10): 3553-3563. doi: 10.13801/j.cnki.fhclxb.20210423.001
SU Fei, LI Chunjie, LI Wenyi, et al. Research on the feasibility and machining experiment of the laser-milling combination machining for Kevlar fiber reinforced composite[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3553-3563. doi: 10.13801/j.cnki.fhclxb.20210423.001
Citation: SU Fei, LI Chunjie, LI Wenyi, et al. Research on the feasibility and machining experiment of the laser-milling combination machining for Kevlar fiber reinforced composite[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3553-3563. doi: 10.13801/j.cnki.fhclxb.20210423.001

Kevlar纤维增强复合材料激光-铣削组合加工试验及可行性分析

doi: 10.13801/j.cnki.fhclxb.20210423.001
基金项目: 国家自然科学基金(51805164);难加工材料高效精密加工重点实验室开放基金(E21753);国家自然科学基金(51575470);江苏省自然科学基金面上项目(BK20201474);湖南省教育厅资助科研项目(18A182)
详细信息
    通讯作者:

    苏飞,博士,副教授,硕士生导师,研究方向为先进制造工艺与装备 E-mail:sfeihe@163.com

  • 中图分类号: TQ327; V258+.3

Research on the feasibility and machining experiment of the laser-milling combination machining for Kevlar fiber reinforced composite

  • 摘要: Kevlar增强复合材料(Kevlar fiber-reinforced plastic,KFRP)在武器装甲防护领域受到了强烈的关注和广泛的应用。在机械加工中极易产生拉毛、难以排屑、刀具磨损严重等问题,在激光加工中依然存在诸多难点。为同时规避KFRP机械加工缺陷和激光加工的短板问题,本文提出KFRP激光-铣削组合加工,分析KFRP激光-铣削组合加工工艺的可行性。试验表明,KFRP激光加工中存在明显的纤维炭化区、树脂熔融区,其中,在树脂熔融区,纤维基本未受损。激光加工的最大切缝宽度在0.5 mm以下,深度不超过2 mm,激光加工工艺参数对切缝宽度a的影响相对较小,但对切缝深度h、纤维炭化区宽度A、树脂熔融区宽度Am影响显著。激光-铣削组合加工中,切屑呈大块状和絮状,当纤维烧蚀不完全时,容易出现抽丝现象。KFRP激光-铣削组合加工,不仅能有效的避免纤维拉毛现象,还能大幅度降低切削力和切削温度,从而提高加工质量,降低加工难度。

     

  • 图  1  Kevlar增强复合材料(KFRP)机械加工及激光加工缺陷

    Figure  1.  Machining and laser processing defects of Kevlar fiber reinforced plastic (KFRP)

    图  2  激光-铣削组合加工设备

    Figure  2.  Experimental setups of laser-milling

    图  3  激光加工评价方法及激光-铣削试验方案

    Figure  3.  Evaluation methods of laser and experiment schemes of laser-milling

    a—Kerf width; A—Carbonized width; Am—Heat affected zone width; H—Carbonized depth; h1—U-shaped carbonization zone width; h2—U-shaped heat affected zone width; D—U-shaped track diameter; R—U-shaped track radius; r—Tool radius; t1—Carbonized zone boundary; t2—Heat affected zone boundary

    图  4  KFRP激光加工表面形貌

    Figure  4.  Machined surface morphologies of KFRP

    图  5  KFRP激光加工过程中树脂烧蚀形态

    Figure  5.  Ablation forms of resin during laser of KFRP

    图  6  KFRP烧蚀区随激光工艺参数的变化规律

    Figure  6.  Changes of ablation zone of KFRP with laser parameters

    图  7  KFRP激光加工“U”的铣削过程

    Figure  7.  Milling process of “U” shaped laser slot of KFRP

    n—Spindle speed; Vf—Feed speed

    图  8  KFRP激光-铣削组合及铣削加工效果

    Figure  8.  Machining effect of laser-milling and milling of KFRP

    图  9  切削力F和切削温度θ 对比

    Figure  9.  Comparison of cutting forces F and temperature θ

    FX, FY, FZ—Cutting force in X-, Y-, Z- direction after laser process, respectively; FXw, FYw, FZw—Cutting force in X-, Y-, Z-direction without laser process, respectively

    图  10  KFRP烧蚀程度对铣削的影响

    Figure  10.  Effect of ablation degree of KFRP on milling

    图  11  KFRP切削宽度对铣削的影响

    Figure  11.  Effect of cutting width of KFRP on milling

    表  1  激光加工工艺参数

    Table  1.   Values of laser parameters

    No.P/WV/(mm·s−1)f/kHzLf/ns
    1 10 3 200 20
    2 20 3 200 20
    3 30 3 200 20
    4 40 3 200 20
    5 50 3 200 20
    6 30 1 200 20
    7 30 2 200 20
    8 30 3 200 20
    9 30 4 200 20
    10 30 5 200 20
    11 30 3 50 20
    12 30 3 350 20
    13 30 3 500 20
    14 30 3 650 20
    15 30 3 200 30
    16 30 3 200 60
    17 30 3 200 120
    Notes: P—Power; V—Scanning speed; f—Frequency; Lf—Pulse width.
    下载: 导出CSV
  • [1] 郑雷. 高性能轻质材料及其复合构件的加工技术研究[D]. 南京: 南京理工大学, 2008.

    ZHENG Lei. Machining technologies of high performance lightweight materials and composite components[D]. Nanjing: Nanjing University of Science and Technology, 2008(in Chinese).
    [2] 王晋宇, 刘海波, 刘阔, 等. 芳纶纤维增强树脂复合材料液氮冷却钻孔试验[J]. 复合材料学报, 2020, 37(1):89-95.

    WANG Jinyu, LIU Haibo, LIU Kuo, et a1. Experiment of liquid nitrogen cooling drilling test of aramid fiber-reinforced polymer composites[J]. Acta Materiae Compositae Sinica,2020,37(1):89-95(in Chinese).
    [3] 霍豪闯. 芳纶纤维复合材料高质量制孔工艺研究[D]. 大连: 大连理工大学, 2019.

    HUO Haochuang. Study on high quality hole making of aramid fiber composites[J]. Dalian: Dalian University of Technology, 2019(in Chinese).
    [4] 张开虎, 于洋, 张夏明, 等. 纤维增强树脂基复合材料激光切割热影响探析[J]. 导航与控制, 2019, 18(5):60-83.

    ZHANG Kaihu, YU Yang, ZHANG Xiaming, et al. Laser cutting induced heat affected zone in fiber reinforced polymer: A comparative analysis[J]. Navigation and Control,2019,18(5):60-83(in Chinese).
    [5] 石文天, 刘玉德, 张永安, 等. 芳纶纤维复合材料切削加工研究进展[J]. 表面技术, 2016, 45(1):28-35.

    SHI Wentian, LIU Yude, ZHANG Yongan, et al. Research progress on the cutting process of aramid fiber compo-sites[J]. Surface Technology,2016,45(1):28-35(in Chinese).
    [6] 庄原. 芳纶纤维复合材料切磨复合加工技术研究[D]. 大连: 大连理工大学, 2013.

    ZHUANG Yuan. Study on the combined machining technology of sawing and grinding for aramid composites[D]. Dalian: Dalian University of Technology, 2013(in Chinese).
    [7] 黄均亮. 芳纶纤维复合材料加工用金刚石磨粒工具的研制[D]. 大连: 大连理工大学, 2013.

    HUANG Junliang. Development of diamond abrasive tools used for machining aramid fiber composites[D]. Dalian: Dalian University of Technology, 2013(in Chinese).
    [8] 石文天, 韩冬, 刘玉德, 等. 超低温微铣削芳纶纤维复合材料表面质量[J]. 中国机械工程, 2019, 30(9):1056-1064. doi: 10.3969/j.issn.1004-132X.2019.09.007

    SHI Wentian, HAN Dong, LIU Yude, et al. Surface quality of aramid fiber composites with ultra-low temperature and micro-milling[J]. China Mechanical Engineering,2019,30(9):1056-1064(in Chinese). doi: 10.3969/j.issn.1004-132X.2019.09.007
    [9] PAN C T, HOCHENG H. The anisotropic heat-affected zone in the laser grooving of fiber reinforced composite material[J]. Journal of Materials Processing Technology,1996,62:54-60. doi: 10.1016/0924-0136(95)02192-2
    [10] CHIPPENDALE R D, GOLOSNOY I O, LEWIN P L. Numerical modelling of thermal decomposition processes and associated damage in carbon fibre composites[J]. Journal of Physics D: Applied Physics,2014,47:1-15.
    [11] CAPRINO G, TAGLIAFERRI V, COVELLI L. The importance of material structure in the laser cutting of glass fiber reinforced plastic composites[J]. Journal of Engineering Materials and Technology,1995,117:133-138. doi: 10.1115/1.2804364
    [12] CENNA A A, MATHEW P. Analysis and prediction of laser cutting parameters of fibre reinforced plastics (FRP) composite materials[J]. International Journal of Machine Tools & Manufacture,2002,42:105-113.
    [13] YILBAS B S, AKHTAR S S, KARATAS C. Laser circular cutting of Kevlar sheets: Analysis of thermal stress filed and assessment of cutting geometry[J]. Optics and Laser Technology,2017,96:180-189. doi: 10.1016/j.optlastec.2017.05.029
    [14] GAUTAMA G D, PANDEY A K. Teaching learning algorithm based optimization of kerf deviations in pulsed Nd: YAG laser cutting of Kevlar-29 composite laminates[J]. Infrared Physics & Technology,2018,89:203-217.
    [15] 朱德志. 碳纤维复合材料紫外短脉冲激光加工工艺研究[D]. 上海: 上海交通大学, 2018.

    ZHU Dezhi. Technology investigation of carbon fiber reinforced plastics UV short plused laser machining[D]. Shanghai: Shanghai Jiao Tong University, 2018(in Chinese).
    [16] DIRK Herzog, MATTIAS Schmidt-Lehr, MAX Oberlander, et al. Laser cutting of carbon fibre reinforced plastics of high thickness[J]. Materials and Design,2016,92:742-749. doi: 10.1016/j.matdes.2015.12.056
    [17] SALAMA A, LI L, MATIVENGA P, et al. High-power picosecond laser drilling/machining of carbon fibre- reinforced polymer (CFRP) composites[J]. Applied Physics A,2016,122(73):1-11.
    [18] WOLFGANG Hintze, MARCEL Cordes, TOBIAS Geis, et al. Laser scored machining of fiber reinforced plastics to prevent delamination[J]. Procedia Manufacturing, 2016, 6: 1-8.
    [19] 张文武, 张天润, 焦健. 陶瓷基复合材料加工工艺简评[J]. 航空制造技术, 2014, 6:45-49. doi: 10.3969/j.issn.1671-833X.2014.01.004

    ZHANG Wenwu, ZHANG Tianrun, JIAO Jian. Comment on ceramic matrix composites machining processes[J]. Aeronautical Manufacturing Technology,2014,6:45-49(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.01.004
    [20] DIRK Herzog, PETER Jaeschke, OLIVER Meier, et al. Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP[J]. International Journal of Machine Tools & Manufacture,2008,48:1464-1473.
    [21] SALAMA A, LI L, MATIVENGA P, et al. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites[J]. Applied Physics A,2016,122(2):1-11.
    [22] 王贵兵, 罗飞, 刘仓理, 等. 芳纶纤维复合材料激光烧蚀损伤形貌研究[J]. 激光技术, 2006, 30(2):168-180. doi: 10.3969/j.issn.1001-3806.2006.02.002

    WANG Guibing, LUO Fei, LIU Cangli, et al. The research of the ablation morphology of the composite reinforced by polyaryl amide fibers irradiated by laser[J]. Laser Technology,2006,30(2):168-180(in Chinese). doi: 10.3969/j.issn.1001-3806.2006.02.002
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  762
  • HTML全文浏览量:  287
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 录用日期:  2021-04-18
  • 网络出版日期:  2021-04-23
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回